Mohammed, Salah-Eldin A.; Scheutzow, Michael K. R. The stable manifold theorem for stochastic differential equations. (English) Zbl 0940.60084 Ann. Probab. 27, No. 2, 615-652 (1999). Consider a stochastic differential equation on \(\mathbb{R}^d\) driven by a Kunita-type semimartingale with stationary ergodic increments, which may be either of Itô or of Stratonovich type. Suppose that the stochastic flow induced by the equation has a hyperbolic stationary (possibly non-adapted) trajectory, with hyperbolicity meaning that none of the associated Lyapunov exponents vanishes. Under these conditions existence of stable and unstable manifolds around the hyperbolic stationary trajectory is proved. The proof rests on arguments invoked in the approach of D. Ruelle [Publ. Math., Inst. Hautes Étud. Sci. 50, 27-58 (1979; Zbl 0426.58014)], which are adapted for stochastic flows in continuous time. A key ingredient is the verification of integrability conditions for the derivative of the flow around the stationary solution. Reviewer: H.Crauel (Berlin) Cited in 58 Documents MSC: 60H10 Stochastic ordinary differential equations (aspects of stochastic analysis) 37H15 Random dynamical systems aspects of multiplicative ergodic theory, Lyapunov exponents 37C40 Smooth ergodic theory, invariant measures for smooth dynamical systems Keywords:semimartingale-helix; multiplicative ergodic theory; invariant manifolds Citations:Zbl 0426.58014 × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Arnold, L. (1998). Random Dynamical Systems. Springer, New York. · Zbl 0938.37031 · doi:10.1080/02681119808806264 [2] Arnold, L. and Imkeller, P. (1996). Stratonovich calculus with spatial parameters and anticipative problems in multiplicative ergodic theory. Stochastic Process. Appl. 62 19- 54. · Zbl 0847.60037 · doi:10.1016/0304-4149(95)00081-X [3] Arnold, L. and Scheutzow, M. K. R. (1995). Perfect cocycles through stochastic differential equations. Probab. Theory Related Fields 101 65-88. · Zbl 0821.60061 · doi:10.1007/BF01192196 [4] Baxendale, P. H. (1992). Stability and equilibrium properties of stochastic flows of diffeomorphisms. In Diffusion Processes and Related Problems in Analysis 2 (M. Pinsky and V. Wihstutz, eds.) 3-35. Birkhäuser, Boston. · Zbl 0762.60044 [5] Boxler, P. (1989). A stochastic version of center manifold theory. Probab. Theory Related Fields 83 509-545. · Zbl 0671.58045 · doi:10.1007/BF01845701 [6] Carverhill, A. (1985). Flows of stochastic dynamical systems: ergodic theory. Stochastics 14 273-317. · Zbl 0536.58019 · doi:10.1080/17442508508833343 [7] Crauel, H. (1991). Markov measures for random dynamical systems. Stochastics Stochastic Rep. 37 153-173. · Zbl 0739.60066 [8] Imkeller, P. and Scheutzow, M. K. R. (1999). On the spatial asymptotic behavior of stochastic flows in Euclidean space. Ann. Probab. · Zbl 0942.60053 · doi:10.1214/aop/1022677255 [9] Ikeda, N. and Watanabe, S. (1989). Stochastic Differential Equations and Diffusion Processes, 2nd ed. North-Holland, Amsterdam. · Zbl 0684.60040 [10] Kunita, H. (1990). Stochastic Flows and Stochastic Differential Equations. Cambridge Univ. Press. · Zbl 0743.60052 [11] Le Jan, Y. (1987). Équilibre statistique pour les produits de difféomorphismes aléatoires indépendants. Ann. Inst. H. Poincaré Probab. Statist. 23 111-120. · Zbl 0614.60047 [12] Ledrappier, F. and Young, L.-S. (1988). Entropy formula for random transformations. Probab. Theory Related Fields 80 217-240. · Zbl 0638.60054 · doi:10.1007/BF00356103 [13] Millet, A., Nualart, D. and Sanz, M. (1992). Large deviations for a class of anticipating stochastic differential equations. Ann. Probab. 20 1902-1931. · Zbl 0769.60053 · doi:10.1214/aop/1176989535 [14] Mohammed, S.-E. A. (1992). Lyapunov exponents and stochastic flows of linear and affine hereditary systems. In Diffusion Processes and Related Problems in Analysis 2 (M. Pinsky and V. Wihstutz, eds.) 141-169. Birkhäuser, Boston. · Zbl 0763.60030 [15] Mohammed, S.-E. A. (1990). The Lyapunov spectrum and stable manifolds for stochastic linear delay equations. Stochastics Stochastic Rep. 29 89-131. · Zbl 0699.60045 · doi:10.1080/17442509008833609 [16] Mohammed, S.-E. A. and Scheutzow, M. K. R. (1996). Lyapunov exponents of linear stochastic functional differential equations driven by semimartingales I: the multiplicative ergodic theory. Ann. Inst. H. Poincaré, Probab. Statist. 32 69-105. · Zbl 0862.60044 [17] Mohammed, S.-E. A. and Scheutzow, M. K. R. (1998). Spatial estimates for stochastic flows in Euclidean space. Ann. Probab. 26 56-77. · Zbl 0937.60056 · doi:10.1214/aop/1022855411 [18] Nualart, D. (1995). Analysis on Wiener space and anticipating stochastic calculus. Ecole d’Eté de Probabilités de Saint-Flour XXV. Lecture Notes in Math. 1690. Springer, Berlin, 123-227. · Zbl 0915.60062 [19] Nualart, D. and Pardoux, E. (1988). Stochastic calculus with anticipating integrands, Analysis on Wiener space and anticipating stochastic calculus. Probab. Theory Related Fields 78 535-581. · Zbl 0629.60061 · doi:10.1007/BF00353876 [20] Ocone, D. and Pardoux, E. (1989). A generalized It o-Ventzell formula. Application to a class of anticipating stochastic differential equations. Ann. Inst. H. Poincaré Probab. Statist. 25 39-71. · Zbl 0674.60057 [21] Oseledec, V. I. (1968). A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trudy Moskov. Mat. Ob s c. 19 179-210. (English trans. Trans. Moscow Math. Soc. 19 197-221.) · Zbl 0236.93034 [22] Protter, P. E. (1986). Semimartingales and measure-preserving flows. Ann. Inst. H. Poincaré Probab. Statist. 22 127-147. · Zbl 0598.60046 [23] Protter, P. E. (1990). Stochastic Integration and Stochastic Differential Equations: A New Approach. Springer, New York. · Zbl 0694.60047 [24] Ruelle, D. (1979). Ergodic theory of differentiable dynamical systems. Publ. Math. Inst. Hautes Etud. Sci. 275-306. · Zbl 0426.58014 [25] Ruelle, D. (1982). Characteristic exponents and invariant manifolds in Hilbert space. Ann. of Math. 115 243-290. · Zbl 0493.58015 · doi:10.2307/1971392 [26] Scheutzow, M. K. R. (1996). On the perfection of crude cocycles. Random Comput. Dynam. 4 235-255. · Zbl 0881.60062 [27] Wanner, T. (1995). Linearization of random dynamical systems. In Dynamics Reported 4 (U. Kirchgraber and H. O. Walther, eds.) 203-269. Springer, New York. · Zbl 0824.34069 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.