zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Distributions and channel capacities in generalized statistical mechanics. (English) Zbl 0940.82002
Summary: The purpose of this note is twofold. Firstly, the authors consider generalizations of Shannon’s entropy and its applications to thermodynamics based on extensivity considerations. Secondly, they apply the generalized entropy formalism to deriving various generalised channel capacities. They arrive at some surprising conclusions of systems achieving “super-capacitance” or “sub-capacitance” depending on the circumstances. These results suggest the possibility of improving the conventional Shannon capacity by using physical systems obeying more generalized statistics, but also predict behaviour which is hard to reconcile with experience.

82B03Foundations of equilibrium statistical mechanics
94A17Measures of information, entropy
Full Text: DOI
[1] Tsallis, C.: J. stat. Phys.. 52, 479 (1988)
[2] Lenzi, E. K.; Malacarneand, L. C.; Mendes, R. S.: Phys. rev. Lett.. 80, 218 (1998)
[3] Hamity, V. H.; Barraco, D. E.: Phys. rev. Lett.. 76, 4664 (1996)
[4] Rajagopal, A.: Phys. rev. Lett.. 76, 3469 (1996)
[5] Plastino, A.; Plastino, A. R.: Phys. lett. A. 226, 257 (1997) · Zbl 0966.82500
[6] Verdu, S.; Han, T. S.: IEEE trans. Inform. theory. 40, 1147 (1994)
[7] Tsallis, C.: Phys. lett. A. 195, 329 (1994) · Zbl 0941.81565
[8] Landsberg, P. T.; Mann, R. B.: Class quantum grav.. 10, 2373 (1993)
[9] Landsberg, P. T.; Mann, R. B.: Gen. relativ. & gravitation. 29, 1269 (1997)
[10] Galgani, L.; Scotti, A.: Physica. 42, 242 (1969)
[11] Lavenda, B. H.; Dunning-Davies, J.: Found. phys. Lett.. 3, 435 (1990)
[12] Tranah, D.; Landsberg, P. T.: Collect. phenom.. 3, 81 (1980)
[13] Tsallis, C.: Phys. lett. A. 206, 389 (1995)
[14] Bu?yu?kkiliç, F.; Demirhan, D.; Gu?leç, A.: Phys. lett. A. 197, 209 (1995)
[15] Oprisan, S. A.: J. phys. I (France). 7, 853 (1997)
[16] Curilef, S.: Z. phys. B. 100, 433 (1996)
[17] Wang, Q. A.; Le Méhauté, A.: Phys. lett. A. 237, 28 (1997)
[18] Shannon, C. E.; Weaver, W.: The mathematical theory of communication. (1949) · Zbl 0041.25804
[19] Daroczy, Z.: Inf. & control. 16, 36 (1970)
[20] Cover, T. M.; Thomas, J. A.: Elements of information theory. (1991) · Zbl 0762.94001