zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A family of nonextensive entropies. (English) Zbl 0940.82008
Summary: A generalized nonextensive two-parameter entropy is developed, along lines which unify current nonextensive frameworks. It recovers, as particular cases, the Tsallis and symmetric entropies, as well as the Boltzmann-Gibbs entropy. The properties of the new $(q,q'$)-entropy are analysed.

82B05Classical equilibrium statistical mechanics (general)
82B03Foundations of equilibrium statistical mechanics
Full Text: DOI
[1] Tsallis, C.: Chaos, solitons and fractals. 6, 539 (1995) · Zbl 0870.58098
[2] Tsallis, C.: J. stat. Phys.. 52, 479 (1988)
[3] Zanette, D. H.; Alemany, P. A.: Phys. rev. Lett.. 77, 2590 (1996)
[4] Hamity, V. H.; Barraco, D. E.: Phys. rev. Lett.. 76, 4664 (1993)
[5] Lavagno, A.; Kaniadakis, G.; Rego-Monteiro, M.; Quarati, P.; Tsallis, C.: Astro. lett. Commun.. 35, 449 (1998)
[6] Anteneodo, C.; Tsallis, C.: J. mol. Liq.. 71, 255 (1997)
[7] Kaniadakis, G.; Lavagno, A.; Quarati, P.: Phys. lett. B. 369, 308 (1996)
[8] Rajagopal, A. K.: Phys. rev. Lett.. 76, 3469 (1996)
[9] Lenzi, E. K.; Malacarne, L. C.; Mendes, R. S.: Phys. rev. Lett.. 80, 218 (1998)
[10] Rajagopal, A. K.; Mendes, R. S.; Lenzi, E. K.: Phys. rev. Lett.. 80, 3907 (1998)
[11] Koponen, I.: Phys. rev. B. 55, 7759 (1997)
[12] Lyra, M. L.; Tsallis, C.: Phys. rev. Lett.. 80, 53 (1998)
[14] Rényi, A.: Probability theory. (1970) · Zbl 0206.18002
[15] Abe, S.: Phys. lett. A. 224, 326 (1997)
[16] Jackson, F. H.: Quart. J. Pure appl. Math.. 41, 193 (1910)
[17] Gómez, C.; Ruiz-Altaba, M.; Sierra, G.: Quantum groups in two-dimensional physics. (1996) · Zbl 0885.17011
[18] Chakrabarti, R.; Jagannathan, R.: J. phys. A. L711 (1991) · Zbl 0735.17026
[19] Mcanally, D. S.: J. math. Phys.. 36, 546 (1995)
[20] Curado, E. M. F; Tsallis, C.: J. phys. A. 25, No. E, 1019 (1992)
[21] Tsallis, C.: Phys. lett. A. 195, 329 (1994) · Zbl 0941.81565
[22] Mariz, A. M.: Phys. lett. A. 165, 409 (1992)
[23] Ramshaw, J. D.: Phys. lett. A. 175, 169 (1993)