Swan modules and Hilbert-Speiser number fields. (English) Zbl 0941.11044

The paper gives necessary conditions for a number field \(K\) to have the Hilbert-Speiser property, from which it follows that \(\mathbb Q\) is the only such field. The property requires that for each tamely ramified abelian extension \(N\) of \(K\) the ring \({\mathfrak o}_N\) of integers in \(N\) has a normal integral basis over \({\mathfrak o}_K\). It implies, e.g., that the class number of \(K\) is 1 and that the exponent of the quotient \(({\mathfrak o}_K/l)^\times \) modulo the image of \({\mathfrak o}_K^\times\) divides \((l-1)^2/2\) for any odd prime \(l\). This last condition applies only to \(\mathbb Q\). The proof rests on a theorem of McCulloh which describes the set \(R\) of realizable classes in the class group \(Cl({\mathfrak o}_KG)\), i.e., of classes \([{\mathfrak o}_L]\) with \(L\) running through the tame Galois extensions of \(K\) with \(G(L/K)\simeq G\), a given elementary abelian group. When \(G\) is \(l\)-elementary abelian of order \(l^n\), this result is combined with \(T^{l^{n-1}(l-1)/2}\subset R\cap D\), where \(T\) is the Swan subgroup of \(Cl({\mathfrak O}_KG)\) and \(D\) the so-called kernel group. The containment results from a natural Mayer-Vietoris sequence by which \(T\) and \(({\mathfrak o}_K/l^n)^\times\) are related, and from the description of \(R\) in terms of the Stickelberger ideal. Special cases are already in D. R. Replogle [J. Algebra 212, 482–494 (1999; Zbl 0923.11152)]. Lower bounds for \(T\) then show the uniqueness of \(\mathbb Q\).


11R33 Integral representations related to algebraic numbers; Galois module structure of rings of integers


Zbl 0923.11152
Full Text: DOI


[1] Cassou-Noguès, Ph.; Srivastav, A., On Taylor’s conjecture for Kummer orders, Séminaire de Théorie des Nombres, Bordeaux (1990), p. 349-363 · Zbl 0726.11038
[2] Cassou-Noguès, Ph.; Taylor, M. J., Elliptic Functions and Rings of Integers. Elliptic Functions and Rings of Integers, Progress in Mathematics, 66 (1987), Birkhäuser: Birkhäuser Boston · Zbl 0608.12013
[3] Chan, S. P.; Lim, C. H., Relative Galois module structure of rings of integers of cyclotomic fields, J. Reine Angew. Math., 434, 205-220 (1993) · Zbl 0753.11038
[4] Curtis, C. W.; Reiner, I., Methods of Representation Theory (1987), Wiley-Interscience: Wiley-Interscience New York · Zbl 0616.20001
[5] Fröhlich, A., Galois Module Structure of Algebraic Integers (1977), Springer-Verlag: Springer-Verlag Berlin · Zbl 0375.12010
[6] Leopoldt, H. H., Über die Hauptordnung der ganzen Elemente eines Abelschen Zahl- körpers, J. Reine Angew. Math., 201, 119-149 (1959) · Zbl 0098.03403
[7] Lettl, G., The ring of integers of an Abelian number field, J. Reine Angew. Math., 404, 162-170 (1990) · Zbl 0703.11060
[8] Mann, H. B., On integral basis, Proc. Amer. Math. Soc., 9, 162-172 (1958) · Zbl 0081.26602
[9] McCulloh, L. R., A Stickelberger condition on Galois module structure for Kummer extensions of prime degree, Algebraic Number Fields, Proceedings of the Durham Symposium 1975 (1977), Academic Press: Academic Press London, p. 525-538 · Zbl 0389.12005
[10] McCulloh, L. R., Galois module structure of elementary Abelian extensions, J. Algebra, 82, 102-134 (1983) · Zbl 0508.12008
[11] McCulloh, L. R., Galois module structure of Abelian extensions, J. Reine Angew. Math., 375, 259-306 (1987) · Zbl 0619.12008
[12] Reiner, I.; Ullom, S., A Mayer-Vietoris sequence for class groups, J. Algebra, 31, 305-342 (1974) · Zbl 0286.12009
[13] Replogle, D. R., Swan Classes and Realisable Classes for Integral Group Rings Over Groups of Prime Order (1997), State University of New York at Albany
[14] Replogle, D. R., Swan modules and realisable classes for Kummer extensions of prime degree, J. Algebra, 212, 482-494 (1999) · Zbl 0923.11152
[15] Schertz, R., Galoismodulstruktur und Elliptische Funktionen, J. Number Theory, 39, 285-326 (1991) · Zbl 0739.11052
[16] A. Srivastav, On Galois module structure of tame \(p\textbf{Q} μ_p^+pL\); A. Srivastav, On Galois module structure of tame \(p\textbf{Q} μ_p^+pL\)
[17] Srivastav, A.; Taylor, M. J., Elliptic curves with complex multiplication and Galois module structure, Invent. Math., 99, 165-184 (1990) · Zbl 0705.14031
[18] Srivastav, A.; Venkataraman, S., Relative Galois module structure of quadratic extensions, Indian J. Pure Appl. Math., 25, 473-488 (1994) · Zbl 0804.11063
[19] Taylor, M. J., Classgroups of Group Rings. Classgroups of Group Rings, London Mathematical Society Lecture Notes (1984), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0597.13002
[20] Ullom, S. V., Nontrivial lower bounds for class groups of integral group rings, Illinois J. Math., 20, 361-371 (1976) · Zbl 0334.20005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.