Num, E.; Rosalskyj, A. On the rate of convergence of series of random variables. (English. Ukrainian original) Zbl 0941.60043 Theory Probab. Math. Stat. 52, 129-140 (1996); translation from Teor. Jmovirn. Mat. Stat. 52, 120-131 (1995). Let the series of random variables \(\sum_{j=1}^{\infty}X_j\) converge almost surely. Let \(T_n=\sum_{j=n}^{\infty}X_j.\) Conditions for convergence of \(\sup_{k \geq n} |T_k|/b_n\) to \(0\) in probability are stated. The weighted series of identically distributed random variables are analysed. New problems are formulated. Reviewer: A.Ya.Olenko (Kyïv) Cited in 4 Documents MSC: 60F05 Central limit and other weak theorems 60F15 Strong limit theorems Keywords:series of random variables; speed of convergence PDFBibTeX XMLCite \textit{E. Num} and \textit{A. Rosalskyj}, Teor. Ĭmovirn. Mat. Stat. 52, 120--131 (1995; Zbl 0941.60043); translation from Teor. Jmovirn. Mat. Stat. 52, 120--131 (1995)