Bondarev, B. V. Stochastic version of the theorems of V. P. Maslov. (English. Ukrainian original) Zbl 0941.60052 Theory Probab. Math. Stat. 53, 7-17 (1996); translation from Teor. Jmovirn. Mat. Stat. 53, 6-16 (1995). The author studies the weak convergence of solutions of the stochastic operator equations \(A_{n}(\omega)x=v_{n}(\omega)\) in Hilbert space to the solution of the equation \(Ax=v\), where \(A_{n}(\omega)\) is a sequence of stochastic linear operators that converges (in some probabilistic sense) to a nonrandom operator \(A\) and \(v_{n}(\omega)\) is a sequence of stochastic elements that converges to a random element \(v.\) Reviewer: A.D.Borisenko (Kyïv) MSC: 60F10 Large deviations Keywords:stochastic operator equation PDFBibTeX XMLCite \textit{B. V. Bondarev}, Teor. Ĭmovirn. Mat. Stat. 53, 6--16 (1995; Zbl 0941.60052); translation from Teor. Jmovirn. Mat. Stat. 53, 6--16 (1995)