×

Adaptive estimation in time-series models. (English) Zbl 0941.62093

The authors focus their attention on adaptive estimation within a semi-parametric framework. The obtained results are well suited for time series models with i.i.d. errors. They consider the estimation of a Euclidean parameter \(\theta\) in a semi-parametric model parametrized for this parameter and an infinite dimensional nuisance parameter \(g\). In the time series models adaptive estimation of the Euclidean parameter is possible thanks to the independence of the present innovation and the past. The authors show that the necessary criteria for parameters to be adaptively estimable, given in a previous work and based on the specific structure of the score function in time series models, are also sufficient. Afterwards they built adaptive and hence efficient estimators and apply their results to ARMA and ARCH models.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62F35 Robustness and adaptive procedures (parametric inference)
62G05 Nonparametric estimation
62F12 Asymptotic properties of parametric estimators
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] BICKEL, P. J. 1982. On adaptive estimation. Ann. Statist. 10 647 671. Z. · Zbl 0489.62033
[2] BICKEL, P. J., KLAASSEN, C. A. J., RITOV, Y. and WELLNER, J. A. 1993. Efficient and Adaptive Estimation for Semiparametric Models. Johns Hopkins Univ. Press. Z. · Zbl 0786.62001
[3] BOLLERSLEV, T. 1986. Generalized autoregressive conditional heteroskedasticity. J. Econometrics 31 307 327. Z. · Zbl 0865.62085
[4] CHAN, K. S., PETRUCCELLI, J. D., TONG, H. and WOOLFORD, S. W. 1985. A multiple-threshold Z. AR 1 model. J. Appl. Probab. 22 267 279. Z. JSTOR: · Zbl 0579.62074
[5] DROST, F. C. and KLAASSEN, C. A. J. 1997. Efficient estimation in semiparametric GARCH models. J. Econometrics. To appear. Z. · Zbl 0944.62120
[6] DROST, F. C., KLAASSEN, C. A. J. and WERKER, B. J. M. 1994. Adaptiveness in time-series Z. models. Asy mptotic Statistics P. Mandl and M. Huskova, eds. 203 211. physica, New Ýork. Z.
[7] ENGLE, R. F. 1982. Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation. Econometrica 50 987 1008. Z. JSTOR: · Zbl 0491.62099
[8] ENGLE, R. F. and GONZALEZ-RIVERA, G. 1991. Semiparametric ARCH models. Journal of \' Business and Economic Statistics 9 345 359. Z.
[9] HAJEK, J. 1970. A characterization of limiting distributions of regular estimates. Z. Wahrsch. \' Verw. Gebiete 14 323 330. · Zbl 0193.18001
[10] HAJEK, J. and SIDAK, Z. 1967. Theory of Rank Tests. Academia, Prague. \' Ź. · Zbl 0161.38102
[11] HALL, P. and HEy DE, C. C. 1980. Martingale Limit Theory and Its Application. Academic Press, New York. Z. · Zbl 0462.60045
[12] JEGANATHAN, P. 1995. Some aspects of asy mptotic theory with applications to time series models. Econometric Theory 11 818 887. Z. JSTOR: · Zbl 04528928
[13] KLAASSEN, C. A. J. 1987. Consistent estimation of the influence function of locally asy mptotically linear estimates. Ann. Statist. 15 1548 1562. Z. · Zbl 0629.62041
[14] KOUL, H. L. and SCHICK, A. 1995. Efficient estimation in nonlinear time series models. Working paper, Michigan State Univ. and State Univ. New York, Binghamton. Z.
[15] KREISS, J. P. 1987a. On adaptive estimation in stationary ARMA processes. Ann. Statist. 15 112 133. Z. · Zbl 0616.62042
[16] KREISS, J. P. 1987b. On adaptive estimation in autoregressive models when there are nuisance functions. Statist. Decisions 5 112 133. Z. · Zbl 0609.62123
[17] LINTON, O. 1993. Adaptive estimation in ARCH models. Econometric Theory 9 539 569. Z. Z. JSTOR: · Zbl 04517478
[18] NELSON, D. B. 1990. Stationarity and persistence in the GARCH 1, 1 model. Econometric Theory 6 318 334. Z. JSTOR:
[19] NEWEY, W. K. 1990. Semiparametric efficiency bounds. J. Applied Econometrics 5 99 135. Z. · Zbl 0705.62033
[20] POLLARD, D. 1984. Convergence of Stochastic Processes. Springer, New York. Z. · Zbl 0544.60045
[21] POTSCHER, B. M. 1995. Comment on “Adaptive estimation in time series regression models” by \" D. G. Steigerwald. J. Econometrics 66 123 129. Z. · Zbl 0813.62099
[22] ROBINSON, P. M. 1988. Semiparametric econometrics: a survey. J. Applied Econometrics 3 35 51. Z.
[23] SCHICK, A. 1986. On asy mptotically efficient estimation in semiparametric models. Ann. Statist. 14 1139 1151. Z. · Zbl 0612.62062
[24] SCHICK, A. 1987. A note on the construction of asy mptotically linear estimates. J. Statist. Plann. Inference 16 89 105. Z. · Zbl 0634.62036
[25] STOKER, T. M. 1991. Lectures on Semiparametric Econometrics. CORE Foundation, Louvain la Neuve, Belgium. Z.
[26] STEIGERWALD, D. G. 1992. Adaptive estimation in time-series regression models. J. Econometrics 54 251 275. Z. · Zbl 0755.62088
[27] STEIGERWALD, D. G. 1995. Reply to B. M. Potscher’s comment on “Adaptive estimation in time \" series regression models.” J. Econometrics 66 131 132. Z. · Zbl 0813.62100
[28] TONG, H. and LIM, K. S. 1980. Threshold autoregression, limit cy cles and cy clical data. J. Roy. Statist. Soc. Ser. B 42 242 292.
[29] WEFELMEy ER, W. 1994. Improving maximum quasi-likelihood estimators. Asy mptotic Statistics Z. P. Mandl and M. Huskova, eds. 467 474. physica, New York. Ź.
[30] WEFELMEy ER, W. 1996. Quasi-likelihood models and optimal inference. Ann. Statist. 24 405 422. Z. · Zbl 0853.62066
[31] WEISS, A. A. 1986. Asy mptotic theory for ARCH models: estimation and testing. Econometric Theory 2 107 131.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.