Klamka, Jerzy Local controllability of 2D nonlinear systems. (English) Zbl 0941.93005 Bull. Pol. Acad. Sci., Tech. Sci. 47, No. 2, 153-161 (1999). The author considers constrained controllability for nonlinear discrete 2D systems of the form \[ x(i+ 1,j+1)= f(x(i, j), x(i+ 1,j), x(i,j+1), u(i,j), u(i+ 1, j),u(i,j+ 1)),\tag{1} \] \(x(i,j)\in \mathbb{R}^n\), \(u(i,j)\in \mathbb{R}^m\) are the state and input vectors at the point \((i,j)\) and \(f: \mathbb{R}^n\times \mathbb{R}^n\times \mathbb{R}^n\times \mathbb{R}^m\times \mathbb{R}^m\times \mathbb{R}^m\to \mathbb{R}^n\). Using some mapping theorems and linear approximations of (1) sufficient conditions for constrained controllability are established. The paper extends some previous results of the author. Reviewer: T.Kaczorek (Warszawa) Cited in 1 Document MSC: 93B05 Controllability 93C35 Multivariable systems, multidimensional control systems 93C55 Discrete-time control/observation systems 93B18 Linearizations 93C10 Nonlinear systems in control theory Keywords:linearization; constrained controllability; nonlinear discrete 2D systems PDF BibTeX XML Cite \textit{J. Klamka}, Bull. Pol. Acad. Sci., Tech. Sci. 47, No. 2, 153--161 (1999; Zbl 0941.93005) OpenURL