Swinging up a pendulum by energy control. (English) Zbl 0941.93543


93C95 Application models in control theory
Full Text: DOI


[6] Chung, C. C.; Hauser, J., Nonlinear control of a swinging pendulum., Automatica, 31, 6, 851-862 (1995) · Zbl 0825.93535
[10] Fradkov, A. L.; Pogromsky, A. Y., Speed gradient control of chaotic continuous-time systems., IEEE TCS, 43, 907-913 (1996)
[12] Furuta, K.; Yamakita, M.; Kobayashi, S., Swing-up control of inverted pendulum using pseudo-state feedback., Journal of Systems and Control Engineering, 206, 263-269 (1992)
[13] Guckenheimer, J., A robust hybrid stabilization strategy for equilibria., IEEE Transactions on Automatic Control, 40, 2, 321-326 (1995) · Zbl 0825.93297
[15] Krstić, M.; Kanellakopoulos, I.; Kokotović, P. V., Passivity and parametric robustness of a new class of adaptive systems., Automatica, 30, 1703-1716 (1994) · Zbl 0814.93039
[16] Lin, Z.; Saberi, A.; Gutmann, M.; Shamash, Y. A., Linear controller for an inverted pendulum having restricted travel: A high-and-low approach., Automatica, 32, 6, 933-937 (1996) · Zbl 0850.93590
[21] Meier, H.; Farwig, Z.; Unbehauen, H., Discrete computer control of a triple-inverted pendulum., Optical Control Applications and Methods, 11, 157-171 (1990) · Zbl 0699.93072
[22] Mori, S.; Nishihara, H.; Furuta, K., Control of unstable mechanical systems: Control of pendulum., International Journal of Control, 23, 5, 673-692 (1976)
[24] Shinbrot, T.; Grebogi, C.; Wisdom, J., Chaos in a double pendulum., American Journal of Physics, 60, 491-499 (1992)
[25] Spong, M. W., The swing up control problem for the acrobot., IEEE Control Systems Magazine, 15, 1, 49-55 (1995)
[28] Wei, Q.; Dayawansa, W. P.; Levine, W. S., Nonlinear controller for an inverted pendulum having restricted travel., Automatica, 31, 6, 841-850 (1995) · Zbl 0825.93536
[30] Yamakita, M.; Furuta, K., VSS adaptive control based on nonlinar model for TITech pendulum., IEEE, 1488-1493 (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.