zbMATH — the first resource for mathematics

Irreducible representations for toroidal Lie algebras. (English) Zbl 0942.17016
A toroidal Lie algebra is a Lie algebra \({\mathfrak g}\) which has the structure \[ {\mathfrak g} = \dot{\mathfrak g} \otimes \mathbb C[t_0^{\pm 1}, \ldots, t_n^{\pm 1}] \oplus {\mathcal K} \oplus {\mathcal D}, \] where \(\dot{\mathfrak g}\) is a finite-dimensional simple complex Lie algebra, \({\mathcal K}\) is central and \({\mathcal D}\) is a certain Lie algebra of derivations of \(\mathbb C[t_0^{\pm 1}, \ldots, t_n^{\pm 1}]\). The main purpose of the paper under review is the construction of irreducible representations of toroidal Lie algebras with finite-dimensional weight spaces with respect to certain natural gradings. The techniques to obtain these results combine the previously used vertex operator techniques with classical Verma module techniques to a new construction process satisfying all requirements.
More precisely, the construction starts with an irreducible module \(W\) of \({\mathfrak {gl}}(n,\mathbb C)\). Then \(T(W) := \mathbb C[t_1^{\pm 1}, \ldots, t_n^{\pm 1}] \otimes W\) is a module of \(\text{Der}(\mathbb C[t_1^{\pm 1}, \ldots, t_n^{\pm 1}])\) and, in addition, of the zero part \({\mathfrak v}_0\) of a certain \(\mathbb Z\)-graded Lie algebra \({\mathfrak v}\) with decomposition \({\mathfrak v} = {\mathfrak v}_+ \oplus {\mathfrak v}_0 \oplus {\mathfrak v}_-\). Then we pass to the induced module \(M := \text{Ind}_{{\mathfrak v}_0 + {\mathfrak v}_+}^{\mathfrak v}(T(W))\) and further to an \({\mathfrak v}\)-irreducible quotient module \(L\) of \(M\). In the final step an irreducible highest weight module of an affine Lie algebra \(\dot{\mathfrak g} \otimes \mathbb C[t_0, t_0^{-1}] \oplus \mathbb C k_0 \oplus \mathbb C d_0\), \(k_0 \in {\mathcal K}\), \(d_0 \in {\mathcal D}\) is tensored with \(L\), which eventually leads to a module of \({\mathfrak g}\). It is remarkable that the results leading to finite-dimensionality of certain weight spaces work in amazing generality for the class of \(\mathbb Z\)-graded Lie algebras with polynomial multiplication introduced in Section I. Later these results are specialized to the concrete setting described above.

17B65 Infinite-dimensional Lie (super)algebras
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
Full Text: DOI
[1] Benkart, G.; Moody, R., Derivations, central extensions and affine Lie algebras, Algebras groups geometries, 3, 456-492, (1993) · Zbl 0619.17014
[2] Berman, S.; Cox, B., Enveloping algebras and representations of toroidal Lie algebras, Pacific J. math., 165, 239-267, (1994) · Zbl 0809.17022
[3] Berman, S.; Gao, Y.; Krylyuk, Y., Quantum tori and the structure of elliptic quasisimple Lie algebras, J. funct. anal., 135, 339-389, (1996) · Zbl 0847.17009
[4] Billig, Y., Principal vertex operator representations for toroidal Lie algebras, J. math. phys., 39, 3844-3864, (1998) · Zbl 0928.17026
[5] Billig, Y., An extension of the KdV hierarchy arising from a representation of a toroidal Lie algebra, J. algebra, 217, 40-67, (1999) · Zbl 1016.37039
[6] B. Cox, and, V. Futorny, Borel Subalgebras and Categories of highest weight modules for Toroidal Lie Algebras, preprint. · Zbl 0969.17006
[7] Dzhumadil’daev, A., Virasoro type Lie algebras and deformations, Z. phys. C, 72, 509-517, (1996) · Zbl 0935.17012
[8] Rao, S.Eswara; Moody, R.V., Vertex representations for n-toroidal Lie algebras and a generalization of the Virasoro algebra, Comm. math. phys., 159, 239-264, (1994) · Zbl 0808.17018
[9] Frenkel, I., Representations of kac – moody algebras and dual resonance modules, Lectures in appl. math., 21, 325-353, (1985)
[10] Frenkel, I.; Lepowsky, J.; Meurman, A., Vertex operator algebras and the monster, (1989), Academic Press Boston · Zbl 0759.20001
[11] Inami, T.; Kanno, H.; Ueno, T., Higher-dimensional WZW model on Kähler manifold and toroidal Lie algebra, Modern phys. lett. A, 12, 2757-2764, (1997) · Zbl 0903.53048
[12] Iohara, K.; Saito, Y.; Wakimoto, M., Hirota bilinear forms with 2-toroidal symmetry, Phys. lett. A, 254, 37-46, (1999) · Zbl 1044.37532
[13] Kac, V., Infinite dimensional Lie algebras, (1990), Cambridge Univ. Press Cambridge · Zbl 0716.17022
[14] Kassel, C., Kähler differentials and coverings of complex simple Lie algebras extended over a commutative ring, J. pure appl. algebra, 34, 265-275, (1984) · Zbl 0549.17009
[15] Lam, T.Y., A first course in noncommutative rings, Graduate texts in math., 131, (1991), Springer-Verlag New York · Zbl 0728.16001
[16] Larsson, T., Conformal fields: A class of representations of vect(N), Internat. J. modern phys., 7, 6493-6508, (1992) · Zbl 0972.17502
[17] Larsson, T., Lowest-energy representations of non-centrally extended diffeomorphism algebras, Comm. math. phys., 201, 461-470, (1999) · Zbl 0936.17025
[18] T. Larsson, Extended diffeomorphism algebras and trajectories in jet space, preprint math-ph/9810003.
[19] Moody, R.V.; Rao, S.Eswara; Yokonuma, T., Toroidal Lie algebras and vertex representations, Geom. dedicata, 35, 283-307, (1990) · Zbl 0704.17011
[20] Rao, S.E., Irreducible representations of the Lie algebra of the diffeomorphisms of a d-dimensional torus, J. algebra, 182, 401-421, (1996) · Zbl 0902.17012
[21] Rudakov, A.N., Irreducible representations of infinite-dimensional Lie algebras of Cartan type, Math. USSR izv., 8, 836-866, (1974) · Zbl 0322.17004
[22] Saito, Y.; Takemura, K.; Uglov, D., Toroidal actions on level 1 modules of U_q(ŝln), Transform groups, 3, 75-102, (1998) · Zbl 0915.17012
[23] Tan, S., Principal construction of the toroidal Lie algebra of type A1, Math. Z., 230, 621-657, (1999) · Zbl 0932.17028
[24] Varagnolo, M.; Vasserot, E., Double loop algebras and the Fock space, Invent. math., 133, 133-159, (1998) · Zbl 0904.17014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.