Barza, Sorina; Persson, Lars-Erik Weighted multidimensional inequalities for monotone functions. (English) Zbl 0942.26028 Math. Bohem. 124, No. 2-3, 329-335 (1999). Summary: We discuss the characterization of the inequality \[ \Big (\int _{{\mathbb R}^N_+} f^q u\Big)^{1/q} \leq C \Big (\int _{{\mathbb R}^N_+} f^p v \Big)^{1/p},\quad 0<q, p <\infty , \] for monotone functions \(f\geq 0\) and nonnegative weights \(u\) and \(v\) and \(N\geq 1\). We prove a new multidimensional integral modular inequality for monotone functions. This inequality generalizes and unifies some recent results in one and several dimensions. MSC: 26D15 Inequalities for sums, series and integrals 46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) 26A48 Monotonic functions, generalizations 26B25 Convexity of real functions of several variables, generalizations Keywords:integral inequalities; monotone functions; several variables; weighted \(L^p\) spaces; modular functions; convex functions; weakly convex functions PDF BibTeX XML Cite \textit{S. Barza} and \textit{L.-E. Persson}, Math. Bohem. 124, No. 2--3, 329--335 (1999; Zbl 0942.26028) Full Text: EuDML