zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The role of critical exponents in blow-up theorems: The sequel. (English) Zbl 0942.35025
Consider the Cauchy problem in $\Bbb R^N$ for the equation $u_t=\Delta u+u^p$, where $p>1$ and $u\geq 0$. In 1966, {\it H. Fujita} [J. Fac. Sci., Univ. Tokyo, Sect. I 13, 109-124 (1966; Zbl 0163.34002)] showed that this problem does not have global nontrivial solutions if $p<p_c:=1+2/N$ whereas both global and non-global positive solutions exist if $p>p_c$. The exponent $p_c$ is called Fujita’s critical exponent. The authors discuss various Fujita-type results which have appeared in the literature since 1990. These results include degenerate equations, problems in unbounded domains and on manifolds, problems with inhomogeneous boundary conditions, cooperative systems of equations. Moreover, the paper contains a section with open problems.

MSC:
35B33Critical exponents (PDE)
35K55Nonlinear parabolic equations
35B35Stability of solutions of PDE
35B40Asymptotic behavior of solutions of PDE
WorldCat.org
Full Text: DOI
References:
[1] Aguirre, J.; Escobedo, M.: On the blow-up of solutions of a convective reaction diffusion equation. Proc. roy. Soc. Edinburgh, sect. 123A, 433-460 (1993) · Zbl 0801.35038
[2] Amann, H.; Fila, M.: A Fujita-type theorem for the Laplace equation with a dynamical boundary condition. Acta math. Univ. comenianae 66, 321-328 (1997) · Zbl 0922.35053
[3] Anderson, J. R.; Deng, K.: Global existence for nonlinear diffusion equations. J. math. Anal. appl. 196, 479-501 (1995) · Zbl 0852.35075
[4] Andreucci, D.; Teedev, A. F.: A Fujita type result for a degenerate Neumann problem with non compact boundary. J. math. Anal. appl. 231, 543-567 (1999) · Zbl 0920.35079
[5] Angenent, A.: The Morse-Smale property for a semilinear parabolic equation. J. differential equations 62, 427-442 (1988) · Zbl 0581.58026
[6] Aronson, D.; Weinberger, H. F.: Multidimensional nonlinear diffusion arising in population genetics. Adv. math. 30, 33-76 (1978) · Zbl 0407.92014
[7] Bandle, C.; Brunner, H.: Blow-up in diffusion equations, a survey. J. comp. Appl. math. 97, 3-22 (1998) · Zbl 0932.65098
[8] Bandle, C.; Levine, H. A.: On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains. Trans. amer. Math. soc. 316, 595-622 (1989) · Zbl 0693.35081
[9] Bandle, C.; Levine, H. A.: Fujita type phenomena for reaction-diffusion equations with convection like terms. Differential integral equation 7, 1169-1193 (1994) · Zbl 0811.35044
[10] Bebernes, J.; Eberly, D.: Mathematical problems from combustion theory. Applied mathematical sciences 83 (1989) · Zbl 0692.35001
[11] Bernis, F.; Hulshof, J.; Vázquez, J. L.: A very singular solution for the dual porous medium equation and the asymptotic behavior of general solutions. J. reine angew. Math. 435, 1-31 (1993) · Zbl 0756.35038
[12] Chen, X. -Y.; Matano, H.: Convergence, asymptotic periodicity and finite-point blow up in one dimensional semilinear heat equations. J. differential equation 78, 160-190 (1989) · Zbl 0692.35013
[13] M. Chlebik, and, M. Fila, From critical exponents to blow-up rates for parabolic problems, Rend. Math. Appl. (in press).
[14] Del Santo, D.; Georgiev, V.; Mitidieri, E.: Global existence of the solutions and formation of singularities for a class of hyperbolic systems. Progress in nonlinear differential equations and their applications 32, 117-140 (1997) · Zbl 0893.35066
[15] Deng, K.: Nonexistence of global solutions of a nonlinear hyperbolic system. Trans. amer. Math. soc. 349, 1685-1696 (1997) · Zbl 0960.35063
[16] Deng, K.: Blow-up of solutions of some nonlinear hyperbolic systems. Rocky mountain J. Math. 29, 807-820 (1999) · Zbl 0945.35054
[17] Deng, K.; Fila, M.; Levine, H. A.: On critical exponent for a system of heat equations coupled in the boundary conditions. Acta math. Univ. comenianae 63, 169-192 (1994) · Zbl 0824.35048
[18] Deng, K.; Kwong, M. K.; Levine, H. A.: The influence of nonlocal nonlinearities on the long-time behavior of solutions of Burgers equation. Quart. appl. Math. 50, 173-200 (1992) · Zbl 0770.35061
[19] Escobedo, M.; Herrero, M. A.: Boundedness and blow up for a semilinear reaction-diffusion system. J. differential equations 89, 176-202 (1991) · Zbl 0735.35013
[20] Escobedo, M.; Levine, H. A.: Critical blowup and global existence numbers for a weakly coupled system of reaction-diffusion equations. Arch. rational mech. Anal. 129, 47-100 (1995) · Zbl 0822.35068
[21] Escobedo, M.; Vázquez, J. L.; Zuazua, E.: Asymptotic behavior and source type solutions for a diffusion-convection equation. Arch. rational mech. Anal. 124, 43-66 (1993) · Zbl 0807.35059
[22] Escobedo, M.; Vázquez, J. L.; Zuazua, E.: A diffusion-convection equation in several space dimensions. Ind. univ. Math. J. 42, 1413-1440 (1993) · Zbl 0791.35059
[23] Escobedo, M.; Zuazua, E.: Large time behavior for convection-diffusion equations in RN. J. funct. Anal. 100, 119-161 (1991) · Zbl 0762.35011
[24] Fila, M.; Levine, H. A.: On critical exponents for a semilinear parabolic system coupled in an equation and a boundary condition. J. math. Anal. appl. 204, 494-521 (1996) · Zbl 0870.35049
[25] Fila, M.; Levine, H. A.; Uda, Y.: A Fujita-type global existence-global non-existence theorem for a system of reaction-diffusion equations with differing diffusivities. Math. methods appl. Sci. 17, 807-835 (1994) · Zbl 0814.35046
[26] Fila, M.; Quittner, P.: The blow-up rate for the heat equation with a non-linear boundary condition. Math. methods appl. Sci. 14, 197-205 (1991) · Zbl 0735.35014
[27] Fujita, H.: On the blowing up of solutions of the Cauchy problem for $ut={\Delta}u+u1+{\alpha}$. J. fac. Sci. univ. Tokyo sec. 1A math. 16, 105-113 (1966)
[28] Galaktionov, V. A.: On conditions for there to be no global solutions of a class of quasilinear parabolic equations. USSR comp. Math. & math. Phys. 22, 73-90 (1982) · Zbl 0548.35068
[29] Galaktionov, V. A.: Blow-up for quasi-linear heat equations with critical Fujita’s exponents. Proc. roy. Soc. Edinburgh 124A, 517-525 (1994) · Zbl 0808.35053
[30] Galaktionov, V. A.; Kurdyumov, S. P.; Mikhailov, A. P.; Samarskiii, A. A.: Unbounded solutions of the Cauchy problem for the parabolic equation $ut=\nabla(u{\sigma}$\nablau)+$u{\beta}$. Dokl. akad. Nauk SSSR 252, 1362-1364 (1980)
[31] Galaktionov, V. A.; Levine, H. A.: On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary. Israel J. Math. 94, 125-146 (1996) · Zbl 0851.35067
[32] Galaktionov, V. A.; Levine, H. A.: A general approach to critical Fujita exponents and systems. Nonlinear anal. TMA 34, 1005-1027 (1998) · Zbl 1139.35317
[33] Galaktionov, V. A.; Vázquez, J. L.: Necessary and sufficient conditions of complete blow up and extinction for one-dimensional quasilinear heat equations. Arch. rational mech. Anal. 129, 225-244 (1995) · Zbl 0827.35055
[34] Galaktionov, V. A.; Vázquez, J. L.: Continuation of blowup solutions of nonlinear heat equations in several space dimensions. Comm. pure appl. Math. 50, 1-67 (1997) · Zbl 0874.35057
[35] Georgiev, V.; Lindblad, H.; Sogge, C.: Weighted Strichartz estimate and global existence for semilinear wave equation. Amer. J. Math. 119, 1291-1319 (1997) · Zbl 0893.35075
[36] Hamada, T.: Nonexistence of global solutions of parabolic equation in conical domains. Tsukuba J. Math. 19, 15-25 (1995) · Zbl 0842.35044
[37] T. Hamada, On the existence and nonexistence of global solutions of semilinear parabolic equations with slowly decaying initial data, preprint. · Zbl 0888.35055
[38] Hayakawa, K.: On the nonexistence of global solutions of some semilinear parabolic equations. Proc. Japan acad. 49, 503-525 (1973) · Zbl 0281.35039
[39] Henry, D.: Geometric theory of semilinear parabolic equations. Lecture notes in mathematics 840 (1981) · Zbl 0456.35001
[40] Hu, B.: Remarks on the blowup estimate for solution of the heat equation with a nonlinear boundary condition. Differential integral equations 9, 891-901 (1996) · Zbl 0852.35072
[41] Hu, B.; Yin, H. -M.: On critical exponents for the heat equation with a nonlinear boundary condition. Ann. inst. Henri. Poincaré 13, 707-732 (1996) · Zbl 0908.35066
[42] Hu, B.; Yin, H. -M.: On critical exponents for the heat equation with a mixed nonlinear Dirichlet-Neumann boundary condition. J. math. Anal. appl. 209, 683-711 (1997) · Zbl 0874.35051
[43] Hu, B.; Yin, H. -M.: Critical exponents for a system of heat equations coupled in a non-linear boundary condition. Math. methods appl. Sci. 19, 1099-1120 (1996) · Zbl 0857.35064
[44] Huang, Q.; Mochizuki, K.: A note on the global solutions of a degenerate parabolic system. Tokyo J. Math. 20, 63-66 (1997) · Zbl 0884.35076
[45] Kavian, O.: Remarks on the large time behavior of a nonlinear diffusion equation. Ann. inst. Henri. Poincaré 4, 423-452 (1987) · Zbl 0653.35036
[46] Kobayashi, K.; Sirao, T.; Tanaka, H.: On the blowing up problem for semilinear heat equations. J. math. Soc. Japan 29, 407-424 (1977) · Zbl 0353.35057
[47] H. Kubo, and, M. Ohta, Critical blowup for systems of semilinear wave equations in low space dimensions, preprint. · Zbl 0945.35016
[48] Y. Kurokawa, and, H. Takamura, Critical curve for p-q systems of nonlinear wave equations in three space dimensions, preprint. · Zbl 0977.35077
[49] Levine, H. A.: Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Put=-au+F(u)$. Arch. rational mech. Anal. 51, 371-386 (1973) · Zbl 0278.35052
[50] Levine, H. A.: The role of critical exponents in blow-up theorems. SIAM reviews 32, 262-288 (1990) · Zbl 0706.35008
[51] Levine, H. A.: A. Fujita type global existence-global nonexistence theorem for a weakly coupled system of reaction-diffusion equations. Z. angew. Math. phys. 42, 408-430 (1991) · Zbl 0786.35075
[52] Levine, H. A.: A global existence-global nonexistence conjecture of Fujita type for a system of degenerate semilinear parabolic equations. (1996) · Zbl 0855.35072
[53] Levine, H. A.; Meier, P.: A blowup result for the critical exponent in cones. Israel J. Math. 67, 1-7 (1989) · Zbl 0696.35013
[54] Levine, H. A.; Meier, P.: The value of the critical exponent for reaction-diffusion equations in cones. Arch. rational mech. Anal. 109, 73-80 (1990) · Zbl 0702.35131
[55] H. A. Levine, and, Q. Zhang, The critical Fujita number for a semilinear heat equation in exterior domains with homogeneous Neumann boundary values, Proc. Royal Soc. Edinburgh, in press. · Zbl 0960.35051
[56] Lu, G.; Sleeman, B. D.: Maximum principles and comparison theorems for semi-linear parabolic systems and their applications. Proc. royal soc. Edinburgh 123A, 857-885 (1993) · Zbl 0791.35006
[57] Lu, G.; Sleeman, B. D.: Sub and super solutions to systems of parabolic equations with applications to generalized Fujita type systems. Math. methods appl. Sci. 17, 1005-1016 (1994) · Zbl 0807.35061
[58] Matano, H.: Nonincrease of the lap number of a solution for a one dimensional semilinear parabolic equation. J. fac. Sci. univ. Tokyo, sect. 1A math. 29, 401-441 (1982) · Zbl 0496.35011
[59] Maz’ja, V. G.: Sobolev spaces. Springer series in soviet mathematics (1985)
[60] Meier, P.: Blow-up of solutions of semilinear parabolic differential equations. Z. angew. Math. phys. 39, 135-149 (1988) · Zbl 0661.35051
[61] Meier, P.: On the critical exponent for reaction-diffusion equations. Arch. rational mech. Anal. 109, 63-72 (1990) · Zbl 0702.35132
[62] Mizoguchi, N.; Yanagida, E.: Critical exponents for the blowup of solutions with sign changes in a semilinear parabolic equation. Math. ann. 307, 663-675 (1997) · Zbl 0872.35046
[63] Mizoguchi, N.; Yanagida, E.: Critical exponents for the blowup of solutions with sign changes in a semilinear parabolic equation II. J. differential equations 145, 295-331 (1998) · Zbl 0924.35055
[64] Mochizuki, K.; Huang, Q.: Existence and behavior of solutions for a weakly coupled system of reaction-diffusion equations. Meth. appl. Math. 5, 109-124 (1998) · Zbl 0913.35065
[65] Mochizuki, K.; Mukai, K.: Existence and nonexistence of global solutions to fast diffusions with source. Methods appl. Anal. 2, 92-102 (1995) · Zbl 0832.35083
[66] Mochizuki, K.; Suzuki, R.: Critical exponent and critical blow up for quasi-linear parabolic equations. Israel J. Math. 98, 141-156 (1997) · Zbl 0880.35057
[67] Ni, W. -M.; Peletier, L. A.; Serrin, J.: Proceedings of the microprogram held in Berkeley, California, August 25--September 12, 1986. Mathematical sciences research institute publications 12 (1988)
[68] Ni, W. -M.; Peletier, L. A.; Serrin, J.: Proceedings of the microprogram held in Berkeley, California, August 25--September 12, 1986. Mathematical sciences research institute publications 13 (1988)
[69] Lloyd, N. G.; Ni, W. -M.; Peletier, L. A.; Serrin, J.: Proceedings of the conference held in gregynog, August 20--29, 1989. Progress in nonlinear differential equations and their applications 7 (1992)
[70] Ohta, S.; Kaneko, A.: Critical exponent of blowup for semilinear heat equation on a product domain. J. fac. Sci. univ. Tokyo, sec. 1A math. 40, 635-650 (1994) · Zbl 0799.35126
[71] Pinsky, R. G.: Existence and nonexistence of global solutions for $ut={\Delta}u+a(x)$up in rd. J. differential equations 133, 152-177 (1997) · Zbl 0876.35048
[72] Pinsky, R. G.: Finite time blow-up for the inhomogeneous equation $ut={\Delta}u+a(x)up+{\lambda}{\phi}$ in rd. Proc. amer. Math. soc. 127, 3313-3327 (1999) · Zbl 0930.35078
[73] Protter, M.; Weinberger, H. F.: Maximum principles in differential equations. (1967) · Zbl 0153.13602
[74] Qi, Y. -W.: On the equation $ut={\Delta}$u${\alpha}+u{\beta}$. Proc. roy. Soc. Edinburgh 123A, 373-390 (1993) · Zbl 0801.35068
[75] Qi, Y. -W.: The critical exponents of parabolic equations and blow-up in rn. Proc. roy. Soc. Edinburgh sect. 128A, 123-136 (1998) · Zbl 0892.35088
[76] Qi, Y. -W.; Levine, H. A.: The critical exponent of degenerate parabolic systems. Z. angew. Math. phys. 44, 249-265 (1993) · Zbl 0816.35068
[77] Souplet, P.: Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source. J. differential equations 153, 374-406 (1999) · Zbl 0923.35077
[78] Souplet, P.; Weissler, W.: Self-similar subsolutions and blowup for nonlinear parabolic problems. J. math. Anal. appl. 212, 60-74 (1997) · Zbl 0892.35011
[79] Sturm, C.: Mémoire sur une classe d’équations à différences partielles. J. math. Pure appl. 1, 373-444 (1836)
[80] Suzuki, R.: Critical blow up for quasilinear parabolic equations in exterior domains. Tokyo J. Math. 19, 397-409 (1996) · Zbl 0868.35064
[81] Suzuki, R.: Existence and nonexistence of global solutions to quasilinear parabolic equations with convection. Hokkaido math. J. 27, 147-196 (1998) · Zbl 0895.35056
[82] Uda, Y.: The critical exponent for a weakly coupled system of the generalized Fujita type reaction-diffusion equations. Z. angew math. Phys. 46, 366-383 (1995) · Zbl 0835.35071
[83] Weissler, F.: Existence and nonexistence of global solutions of a semi-linear heat equation. Israel J. Math. 38, 29-40 (1981) · Zbl 0476.35043
[84] Zhang, Q.: A new critical phenomenon for semilinear parabolic problems. J. math. Anal. appl. 219, 125-139 (1998) · Zbl 0962.35087
[85] Zhang, Q.: Blow up and global existence of solutions to an inhomogeneous parabolic system. J.d.e. 147, 155-183 (1998) · Zbl 0914.35024
[86] Q. Zhang, On five nonlinear boundary value problems on exterior domains, preprint.
[87] Zhang, Q.: Blow up results for nonlinear parabolic equations on manifolds. Duke math. J. 97, 515-539 (1999) · Zbl 0954.35029
[88] Renclawowicz, J.: Global existence and blow up for a completely coupled Fujita type system of reaction-diffusion equations. Appl. math. 25, 313-326 (1998) · Zbl 1002.35070