zbMATH — the first resource for mathematics

The Toda lattice. I: Existence of integrals. (English) Zbl 0942.37504
Summary: Following recent computer studies, which suggested that the equations of motion of Toda’s exponential lattice should be completely integrable, M. Hénon [ibid. 9, 1921-1923 (1974)] discovered analytical expressions for the constants of the motion. In the present paper, the existence of integrals is proved by a different method. Our approach shows the Toda lattice to be a finite-dimensional analog of the Korteweg-de Vries partial differential equation. Certain integrals of the Toda equations are the counterparts of the conserved quantities of the Korteweg-de Vries equation, and the theory initiated here has been used elsewhere to obtain solutions of the infinite lattice by inverse-scattering methods.

37K15 Inverse spectral and scattering methods for infinite-dimensional Hamiltonian and Lagrangian systems
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37K60 Lattice dynamics; integrable lattice equations
82C99 Time-dependent statistical mechanics (dynamic and nonequilibrium)
Full Text: DOI
[1] M. Toda, Prog. Theor. Phys. Suppl. 45 pp 174– (1970) · doi:10.1143/PTPS.45.174
[2] J. Ford, Prog. Theor. Phys.
[3] M. Hénon, Phys. Rev. B 9 pp 1921– (1974) · Zbl 0942.37503 · doi:10.1103/PhysRevB.9.1921
[4] C. S. Gardner, Phys. Rev. Lett. 19 pp 1095– (1967) · doi:10.1103/PhysRevLett.19.1095
[5] M. toda, J. Phys. Soc. Jap. 34 pp 18– (1973) · doi:10.1143/JPSJ.34.18
[6] P. D. Lax, Commun. Pure Appl. Math. 21 pp 467– (1968) · Zbl 0162.41103 · doi:10.1002/cpa.3160210503
[7] V. E. Zakharov, Zh. Eksp. Teor. Fiz. 61 pp 118– (1971)
[8] M. Wadati, J. Phys. Soc. Jap. 32 pp 1681– (1972) · doi:10.1143/JPSJ.32.1681
[9] V. E. Zakharov, Funkts. Anal. ievo Prilozh. 5 pp 18– (1971)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.