Borisovich, A. Y.; Marzantowicz, W. Bifurcation of the equivariant minimal interfaces in a hydromechanics problem. (English) Zbl 0942.58025 Abstr. Appl. Anal. 1, No. 3, 291-304 (1996). A variational bifurcation problem about the capillary interface of two fluids with densities \(\rho_1\), \(\rho_2\), \(\rho_2-\rho_1 >0\) in a cylinder with a section \(\Omega\subset \mathbb{R}^2\), \(w_{\mid{\partial\Omega}}=0\), is considered. The case of 2-dimensional kernel of the linearized operator is investigated. Reviewer: Boris V.Loginov (Ul’yanovsk) Cited in 3 Documents MSC: 58E09 Group-invariant bifurcation theory in infinite-dimensional spaces 58E30 Variational principles in infinite-dimensional spaces 53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature 76A99 Foundations, constitutive equations, rheology, hydrodynamical models of non-fluid phenomena Keywords:hydromechanics; bifurcation PDFBibTeX XMLCite \textit{A. Y. Borisovich} and \textit{W. Marzantowicz}, Abstr. Appl. Anal. 1, No. 3, 291--304 (1996; Zbl 0942.58025) Full Text: DOI EuDML Link