×

The extremal index of a higher-order stationary Markov chain. (English) Zbl 0942.60038

The author presents a method of computing the so-called extremal index [see R. M. Loynes, Ann. Math. Stat. 36, 993-999 (1965; Zbl 0178.53201)] of a real-valued \(k\)th order, \(k\geq 1\), stationary Markov chain. The method is based on the assumption that the joint distribution of \(k+1\) consecutive variables is in the domain of attraction of some multivariate extreme value distribution. Four examples illustrate how the method works.

MSC:

60G70 Extreme value theory; extremal stochastic processes
60J05 Discrete-time Markov processes on general state spaces
60G10 Stationary stochastic processes
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)

Citations:

Zbl 0178.53201
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Asmussen, S. (1987). Applied Probability and Queues. Wiley, Chichester. · Zbl 0624.60098
[2] Berman, S. M. (1964). Limit theorems for the maximum term in stationary sequences. Ann. Math. Statist. 35 502-516. · Zbl 0122.13503
[3] Billingsley, P. (1985). Probability and Measure, 2nd ed. Wiley, New York. · Zbl 0822.60002
[4] Chernick, M. R. (1981). A limit theorem for the maximum of autoregressive processes with uniform marginal distributions. Ann. Probab. 9 145-149. · Zbl 0453.60026
[5] Coles, S. G. and Tawn, J. A. (1991). Modelling extreme multivariate events. J. Roy. Statist. Soc. Ser. B 53 377-392. JSTOR: · Zbl 0800.60020
[6] Dekkers, A. L. M. and de Haan, L. (1989). On the estimation of the extreme-value index and large quantile estimation. Ann. Statist. 17 1795-1832. · Zbl 0699.62028
[7] Galambos, J. (1987). The Asy mptotic Theory of Extreme Order Statistics, 2nd ed. Krieger, Florida. (1st ed. published 1978 by Wiley, New York.) · Zbl 0634.62044
[8] Hsing, T. (1984). Point processes associated with extreme value theory. Ph.D. dissertation, Dept. Statistics, Univ. North Carolina, Chapel Hill.
[9] Hsing, T. (1987). On the characterization of certain point processes. Stochastic Process. Appl. 26 297-316. · Zbl 0645.60057
[10] Hsing, T. (1991). Estimating the parameters of rare events. Stochastic Process. Appl. 37 117-139. · Zbl 0722.62021
[11] Hsing, T. (1993). Extremal index estimation for a weakly dependent stationary sequence. Ann. Statist. 21 2043-2071. · Zbl 0797.62018
[12] Johnson, N. L. and Kotz, S. (1972). Distributions in Statistics: Continuous Multivariate Distributions. Wiley, New York. · Zbl 0248.62021
[13] Leadbetter, M. R. (1974). On extreme values in stationary sequences. Z. Wahrsch. Verw. Gebiete 28 289-303. · Zbl 0265.60019
[14] Leadbetter, M. R. (1983). Extremes and local dependence in stationary sequences. Z. Wahrsch. Verw. Gebiete 65 291-306. · Zbl 0506.60030
[15] Leadbetter, M. R., Lindgren, G. and Rootzén, H. (1983). Extremes and Related Properties of Random Sequences and Processes. Springer, New York. · Zbl 0518.60021
[16] Loy nes, R. M. (1965). Extreme values in uniformly mixing stationary stochastic processes. Ann. Math. Statist. 36 993-999. · Zbl 0178.53201
[17] Marshall, A. W. and Olkin, I. (1983). Domains of attraction of multivariate extreme value distributions. Ann. Probab. 11 168-177. · Zbl 0508.60022
[18] Nandagopalan, S. (1990). Multivariate extremes and estimation of the extremal index. Ph.D. dissertation, Dept. Statistics, Univ. North Carolina, Chapel Hill. · Zbl 0881.60050
[19] Nummelin, E. (1984). General Irreducible Markov Chains and Non-Negative Operators. Cambridge Univ. Press. · Zbl 0551.60066
[20] O’Brien, G. L. (1974). The maximum term of uniformly mixing stationary processes. Z. Wahrsch. Verw. Gebiete 30 57-63. · Zbl 0277.60020
[21] O’Brien, G. L. (1987). Extreme values for stationary and Markov sequences. Ann. Probab. 15 281-291. · Zbl 0619.60025
[22] Perfekt, R. (1994). Extremal behaviour of stationary Markov chains with applications. Ann. Appl. Probab. 4 529-548. · Zbl 0806.60041
[23] Perfekt, R. (1997). Extreme value theory for a class of Markov chains with values in d. Adv. in Appl. Probab. 29 138-164. JSTOR: · Zbl 0882.60049
[24] Pickands, J. (1975). Statistical inference using extreme order statistics. Ann. Statist. 3 119-131. · Zbl 0312.62038
[25] Pickands, J. (1981). Multivariate extreme value distributions. In Proceedings of the 43rd Session of the International Statistical Institute, Buenos Aires, Argentina 2 859-878. · Zbl 0518.62045
[26] Resnick, S. I. (1987). Extreme Values, Point Processes and Regular Variation. Springer, New York. · Zbl 0633.60001
[27] Rootzén, H. (1978). Extremes of moving averages of stable processes. Ann. Probab. 6 847-869. · Zbl 0394.60025
[28] Rootzén, H. (1988). Maxima and exceedances of stationary Markov chains. Adv. in Appl. Probab. 20 371-390. JSTOR: · Zbl 0654.60023
[29] Smith, R. L. (1987). Estimating tails of probability distributions. Ann. Statist. 15 1174-1207. Smith, R. L. (1992a). The extremal index for a Markov chain. J. Appl. Probab. 29 37-45. Smith, R. L. (1992b). On an approximation formula for the extremal index in a Markov chain. Mimeo Series 2087, Institute of Statistics, Dept. Statistics, Univ. North Carolina, Chapel Hill. · Zbl 0642.62022
[30] Smith, R. L. and Weissman, I. (1994). Estimating the extremal index. J. Roy. Statist. Soc. Ser. B 56 515-528. JSTOR: · Zbl 0796.62084
[31] Smith, R. L., Tawn, J. A. and Coles, S. G. (1997). Markov chain models for threshold exceedances. Biometrika 84 249-268. JSTOR: · Zbl 0891.60047
[32] Tawn, J. A. (1988). Bivariate extreme value theory: models and estimation. Biometrika 75 397- 415. JSTOR: · Zbl 0653.62045
[33] Tawn, J. A. (1990). Modelling multivariate extreme value distributions. Biometrika 77 245-253. · Zbl 0716.62051
[34] Yun, S. (1994). Extremes and threshold exceedances in higher order Markov chains with applications to ground-level ozone. Ph.D. dissertation, Dept. Statistics, Univ. North Carolina, Chapel Hill.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.