×

Estimating a tail exponent by modelling departure from a Pareto distribution. (English) Zbl 0942.62059

Summary: We suggest two semiparametric methods for accommodating departures from a Pareto model when estimating a tail exponent by fitting the model to extreme-value data. The methods are based on approximate likelihood and on least squares, respectively. The latter is somewhat simpler to use and more robust against departures from classical extreme-value approximations, but produces estimators with approximately 64% greater variance when conventional extreme-value approximations are appropriate. Relative to the conventional assumption that the sampling population has exactly a Pareto distribution beyond a threshold, our methods reduce bias by an order of magnitude without inflating the order of variance. They are motivated by data on extrema of community sizes and are illustrated by an application in that context.

MSC:

62G32 Statistics of extreme values; tail inference
62G30 Order statistics; empirical distribution functions
Full Text: DOI

References:

[1] CSORGO, S., DEHEUVELS, P. and MASON, D. 1985. Kernel estimates of the tail index of a \" distribution. Ann. Statist. 13 1050 1077. Z. · Zbl 0588.62051
[2] DAVID, H. A. 1970. Order Statistics. Wiley, New York. Z. · Zbl 0223.62057
[3] DAVISON, A. C. 1984. Modelling excesses over high thresholds, with an application. In StatistiZ. cal Extremes and Applications J. Tiago de Oliveira, ed. 461 482. Reidel, Dordrecht. Z.
[4] DE HAAN, L. and RESNICK, S. I. 1980. A simple asymptotic estimate for the index of a stable distribution. J. Roy. Statist. Soc. Ser. B 42 83 88. Z. JSTOR: · Zbl 0422.62017
[5] HALL, P. 1982. On some simple estimates of an exponent of regular variation. J. Roy. Statist. Soc. Ser. B 44 37 42. Z. JSTOR: · Zbl 0521.62024
[6] HALL, P. 1990. Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems. J. Multivariate Anal. 32 177 203. Z. · Zbl 0722.62030 · doi:10.1016/0047-259X(90)90080-2
[7] HALL, P. and WELSH, A. H. 1985. Adaptive estimates of parameters of regular variation. Ann. Statist. 13 331 341. Z. · Zbl 0605.62033 · doi:10.1214/aos/1176346596
[8] HILL, B. M. 1970. Zipf ’s law and prior distributions for the composition of a population. J. Amer. Statist. Assoc. 65 1220 1232. Z. JSTOR: · Zbl 0224.92011 · doi:10.2307/2284288
[9] HILL, B. M. 1974. The rank frequency form of Zipf ’s law. J. Amer. Statist. Assoc. 69 1017 1026. Z. JSTOR: · Zbl 0301.60011 · doi:10.2307/2286182
[10] HILL, B. M. 1975. A simple general approach to inference about the tail of a distribution. Ann. Statist. 3 1163 1174. Z. · Zbl 0323.62033 · doi:10.1214/aos/1176343247
[11] HILL, B. M. and WOODROOFE, M. 1975. Stronger forms of Zipf ’s law. J. Amer. Statist. Assoc. 70 212 229. Z. JSTOR: · Zbl 0326.92014 · doi:10.2307/2285406
[12] HOSKING, J. R. M. and WALLIS, J. R. 1987. Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29 339 349. Z. JSTOR: · Zbl 0628.62019 · doi:10.2307/1269343
[13] HOSKING, J. R. M., WALLIS, J. R. and WOOD, E. F. 1985. Estimation of the generalized extreme-value distribution by the method of probability-weighted moments. Technometrics 27 251 261. Z. NERC 1975. Flood Studies Report 1. Natural Environment Research Council, London. Z. JSTOR: · doi:10.2307/1269706
[14] PICKANDS, J. III 1975. Statistical inference using extreme order statistics. Ann. Statist. 3 119 131. Z. · Zbl 0312.62038 · doi:10.1214/aos/1176343003
[15] ROOTZEN, H. and TAJVIDI, N. 1997. Extreme value statistics and wind storm losses: a case study. Scand. Actuar. J. 70 94. Z. · Zbl 0926.62104 · doi:10.1080/03461238.1997.10413979
[16] SMITH, R. L. 1984. Threshold methods for sample extremes. In Statistical Extremes and Z. Applications J. Tiago de Oliveira, ed. 621 638. Reidel, Dordrecht. Z. · Zbl 0574.62090
[17] SMITH, R. L. 1985. Maximum likelihood estimation in a class of nonregular cases. Biometrika 72 67 90. Z. JSTOR: · Zbl 0583.62026 · doi:10.1093/biomet/72.1.67
[18] SMITH, R. L. 1989. Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone. Statist. Sci. 4 367 393. Z. · Zbl 0955.62646 · doi:10.1214/ss/1177012400
[19] TEUGELS, J. L. 1981. Limit theorems on order statistics. Ann. Probab. 9 868 880. Z. · Zbl 0467.62046 · doi:10.1214/aop/1176994314
[20] TODOROVIC, P. 1978. Stochastic models of floods. Water Resource Research 14 345 356. Z.
[21] WEISSMAN, I. 1978. Estimation of parameters and large quantiles based on the k largest observations. J. Amer. Statist. Assoc. 73 812 815. · Zbl 0397.62034 · doi:10.2307/2286285
[22] WICKENS, C. H. 1921. Census of the Commonwealth of Australia, 1921 1. H. J. Green, Government Printer, Melbourne. Z.
[23] ZIPF, G. K. 1941. National Unity and Disunity: the Nation as a Bio-Social Organism. Principia Press, Bloomington, IN. Z.
[24] ZIPF, G. K. 1949. Human Behavior and the Principle of Least Effort: an Introduction to Human Ecology. Addison-Wesley, Cambridge, MA.
[25] TORONTO, ONTARIO CANBERRA ACT 0200 CANADA M55 3G3 AUSTRALIA E-MAIL: halpstat@pretty.anu.edu.au
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.