A fast convergent and accurate temperature model for phase-change heat conduction. (English) Zbl 0942.76038

Summary: This work proposes a temperature-based finite element model for transient heat conduction involving phase change. Like preceding temperature-based models, it is characterized by the discontinuous spatial integration over the elements affected by the phase change. Using linear triangles or tetrahedrals, integration can be performed in a closed analytical way, assuring an exact evaluation of the discrete balance equation. Because of its unconditional stability, an Euler-backward time-stepping scheme is implemented. A crucial fact is the computation of the exact tangent matrices for the Newton-Raphson solution of the nonlinear system of discretized equations. Efficiency of the model is tested by means of the results obtained for the Neumann problem and for the solidification of a steel ingot.


76M10 Finite element methods applied to problems in fluid mechanics
76T10 Liquid-gas two-phase flows, bubbly flows
80A22 Stefan problems, phase changes, etc.
80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI


[1] Free and Moving Boundary Problems, Clarendon Press, Oxford, 1984.
[2] Thomas, Metall. Trans. B 15B pp 307– (1984)
[3] Crivelli, Revista Internacional de M?todos Num?ricos para C?lculo y Dise?o en Ingenier?a 1 pp 43– (1985)
[4] Dalhuijsen, Int. J. Numer. Meth. Engng. 23 pp 1807– (1986) · Zbl 0631.65127
[5] Salcudean, Int. J. Numer. Meth. Engng. 25 pp 445– (1988) · Zbl 0668.76113
[6] Voller, Int. J. Numer. Meth. Engng. 30 pp 875– (1990) · Zbl 0729.73237
[7] Idelsohn, Arch. Comput. Meth. Engng. 1 pp 49– (1994)
[8] Crivelli, Int. J. Numer. Meth. Engng. 23 pp 99– (1986) · Zbl 0584.65083
[9] Storti, Int. J. Numer. Meth. Engng. 24 pp 375– (1987) · Zbl 0621.65130
[10] Celentano, Int. J. Numer. Meth. Engng. 37 pp 3441– (1994) · Zbl 0825.73776
[11] ?Modelaci?n num?rica de problemas de frontera libre y m?vil?, Ph.D. Thesis, Universidad Nacional del Litoral, Santa Fe, Argentina, 1990.
[12] ?Analysis of transient algorithms with particular reference to stability behavior?, in and (eds.), Computational Methods for Transient Analysis, Elsevier, Amsterdam, 1983.
[13] ?Modelisation par ?l?ments finis des ph?nom?nes d’ablation thermique avec pyrolyse?, Ph.D. Thesis, Facult? des Sciences Apliqu?es, Universit? de Li?ge, Belgique, 1988.
[14] Tamma, Int. J. Numer. Meth. Engng. 30 pp 803– (1990)
[15] Yao, Metall. Trans. B 24B pp 279– (1993)
[16] and Finite Element Method, Vol. 1, 4th edn, McGraw-Hill, New York, 1989.
[17] Comini, Int. J. Numer. Meth. Engng. 8 pp 613– (1974) · Zbl 0279.76045
[18] and ?Soluci?n num?rica del problema de conducci?n de calor con cambio de fase mediante m?todos de dominio fijo?, Mec?nica Computacional, AMCA, 1997.
[19] Runnels, Numer. Heat Transfer B 19 pp 13– (1991)
[20] Pham, Int. J. Heat Mass Transfer 29 pp 285– (1986) · Zbl 0605.76116
[21] Rolph, Int. J. Numer. Meth. Engng. 18 pp 119– (1982) · Zbl 0474.65089
[22] and Finite Element Method, Vol. 2, 4th edn, McGraw-Hill, New York, 1989.
[23] Chandra, Int. J. Numer. Meth. Engng. 30 pp 1301– (1990)
[24] Egolf, Int. J. Heat Mass Transfer 37 pp 2917– (1994) · Zbl 0900.76681
[25] ?Un modelo termomec?nico para problemas de solidificaci?n de metales?, Ph.D. Thesis, Universitat Polit?cnica de Catalunya, Escola T?cnica Superior d’Enginyers de Camins, Canals i Ports, Barcelona, Espa?a, 1994.
[26] Rathjen, J. Heat Transfer 93 pp 101– (1971)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.