zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A model of HIV-1 pathogenesis that includes an intracellular delay. (English) Zbl 0942.92017
Summary: Mathematical modeling combined with experimental measurements have yielded important insights into HIV-1 pathogenesis. For example, data from experiments in which HIV-infected patients are given potent antiretroviral drugs that perturb the infection process have been used to estimate kinetic parameters underlying HIV infection. Many of the models used to analyze data have assumed drug treatments to be completely efficacious and that upon infection a cell instantly begins producing virus. We consider a model that allows for less then perfect drug effects and which includes a delay in the initiation of virus production. We present detailed analysis of this delay differential equation model and compare the results to a model without delay. Our analysis shows that when drug efficacy is less than $100\%$, as may be the case in vivo, the predicted rate of decline in plasma virus concentration depends on three factors: the death rate of virus producing cells, the efficacy of therapy, and the length of the delay. Thus, previous estimates of infected cell loss rates can be improved upon by considering more realistic models of viral infection.

92C50Medical applications of mathematical biology
34K60Qualitative investigation and simulation of models
92C60Medical epidemiology
Full Text: DOI
[1] Perelson, A. S.; Neumann, A. U.; Markowitz, M.; Leonard, J. M.; Ho, D. D.: HIV-1 dynamics in vivo: virion clearancerate infected cell life-span and viral generation time. Science 271, 1582 (1996)
[2] Perelson, A. S.; Essunger, P.; Cao, Y.; Vesanen, M.; Hurley, A.; Saksela, K.; Markowitz, M.; Ho, D. D.: Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387, 188 (1997)
[3] Wei, X.; Ghosh, S. K.; Taylor, M. E.; Johnson, V. A.; Emini, E. A.; Deutsch, P.; Lifson, J. D.; Bonhoeffer, S.; Nowak, M. A.; Hahn, B. H.; Saag, S. S.; Shaw, G. M.: Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373, 117 (1995)
[4] Ho, D. D.; Neumann, A. U.; Perelson, A. S.; Chen, W.; Leonard, J. M.; Markowitz, M.: Rapid turnover of plasma virions and CD4 lymphocytesin HIV-1 infection. Nature 373, 123 (1995)
[5] Herz, V. M.; Bonhoeffer, S.; Anderson, R. M.; May, R. M.; Nowak, M. A.: Viral dynamics in vivo: limitations onestimations on intracellular delay and virus decay. Proc. nat. Acad. sci. USA 93, 7247 (1996)
[6] Mittler, J. E.; Sulzer, B.; Neumann, A. U.; Perelson, A. S.: Influence of delayed virus production on viral dynamics in HIV-1 infected patients. Math. biosci. 152, 143 (1998) · Zbl 0946.92011
[7] Wein, L. M.; D’amato, R. M.; Perelson, A. S.: Mathematical considerations of antiretroviral therapy aimed at HIV-1 eradication or maintenance of low viral loads. J. theoret. Biol. 192, 81 (1998)
[8] Grossman, Z.; Feinberg, M.; Kuznetsov, V.; Dimitrov, D.; Paul, W.: HIV infection: how effective is drug combinationtreatment?. Immunol. today 19, 528 (1988)
[9] Tam, J.: Delay effect in a model for virus replication. IMA J. Math. appl. Med. biol. 16, 29 (1999) · Zbl 0914.92012
[10] Mittler, J. E.; Markowitz, M.; Ho, D. D.; Perelson, A. S.: Refined estimates for HIV-1 clearance rate and intracellular delay. Aids 13, 1415 (1999)
[11] P.W. Nelson, J. Mittler, A.S. Perelson, Effect of the eclipse phase of the viral life cycle on estimation of HIV viral dynamic parameters, submitted
[12] Bremermann, H. J.: Mechanism of HIV persistence: implications for vaccines and therapy. J. aids 9, 459 (1995)
[13] Stilianakis, N. I.; Boucher, C. A. B.; Dejong, M. D.; Vanleeuwen, R.; Schuurman, R.; Deboer, R. J.: Clinical data sets on human immunodeficiency virus type 1 reverse transcriptase resistant mutants explained by a mathematical model. J. virol. 71, 161 (1997)
[14] Bonhoeffer, S.; May, R. M.; Shaw, G. M.; Nowak, M. A.: Virus dynamics and drug therapy. Proc. nat. Acad. sci. USA 94, 6971 (1997)
[15] Essunger, P.; Perelson, A. S.: Modeling HIV infection of CD4+ T-cell subpopulations. J. theoret. Biol. 170, 367 (1994)
[16] Kirschner, D. E.; Mehr, R.; Pereson, A. S.: The role of the thymus in pediatric HIV-1 infection. J. aids 18, 95 (1998)
[17] Nowak, M. A.; Anderson, R. M.; Boerlijist, M. C.; Bonhoeffer, S.; May, R. M.; Mcmichael, A. J.: HIV-1 evolution and disease progression. Science 274, 1008 (1996)
[18] Stilianakis, N. I.; Dietz, K.; Schenzle, D.: Analysis of a model for the pathogenesis of AIDS. Math. biosci. 145, 27 (1997) · Zbl 0896.92016
[19] Nowak, M. A.; Bonhoeffer, S.; Shaw, G. M.; May, R. M.: Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations. J. theoret. Biol. 184, 205 (1997)
[20] Kirschner, D. E.; Webb, G. F.: Understanding drug resistance for monotherapy treatment of HIV infection. Bull. math. Biol. 59, 763 (1997) · Zbl 0922.92011
[21] P.W. Nelson, Mathematical models of HIV pathogenesis and immunology, PhD thesis, University of Washington, pp. 1--150, 1998
[22] Perelson, A. S.; Nelson, P. W.: Mathematical models of HIV dynamics in vivo. SIAM review 41, 3 (1999) · Zbl 1078.92502
[23] Bellman, R.; Cooke, K. L.: Differential-difference equations. (1963) · Zbl 0105.06402
[24] Pratt, D. M.: Analysis of population development in daphnia at different temperatures. Biol. bull. 85, 116 (1943)
[25] Taylor, C. E.; Sokal, R. R.: Oscillations in housefly population sizes due to time lags. Ecology 57, 1060 (1976)
[26] Macdonald, N.: Time lags in biological models. (1970) · Zbl 0403.92020
[27] El’sgol’ts, L. E.; Norkin, S. B.: An introduction to the theory and application of differential equations with deviating arguments. (1973)
[28] Igarashi, T.; Brown, C.; Azadegan, A.; Haigwood, N.; Dimitrov, D.; Martin, M. A.; Shibata, R.: Human immunodeficiency virus type 1 neutralizing antibodies accelerate clearance of cell-free virions from blood plasma. Nature med. 5, 211 (1999)
[29] B. Ramratnam, S. Bonhoeffer, J. Binley, A. Hurley, L. Zhang, J.E. Mittler, M. Markowitz, J.M. Moore, A.S. Perelson, D.D. Ho, Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis, Lancet 354 (1999) 1782
[30] Kirschner, D. E.; Webb, G. F.: A model for treatment strategy in the chemotherapy of AIDS. Bull. math. Biol. 58, 367 (1996) · Zbl 0853.92009
[31] Mclean, A. R.; Michie, C. A.: In vivo estimates of division and death rates of human lymphocytes. Proc. nat. Acad. sci. USA 92, 3707 (1995)