×

Algebraic slopes and analytic slopes of a \({\mathcal D}\)-module. (Pentes algébriques et pentes analytiques d’un \({\mathcal D}\)-module.) (French) Zbl 0944.14007

Let \(Y\) be a (smooth) hypersurface in a complex analytic variety \(X\) over \({\mathbb C}\) (or an algebraically closed field of characteristic zero). To a holonomic \({\mathcal D}\) - module \(M\) one can associate an irregular perverse sheaf \(\text{Irr}_Y(M)\) with a filtration indexed by \(s \in [1,\infty[\) such that the associated graded sheaves \(\text{Gr}(s)\) form a locally finite family. This defines (at each \(y\in Y\)) the transcendental slopes of \(M\). This filtration also enables one to define the Newton polygon of \(M\). On the other hand, the theory of microcharacteristic varieties [Y. Laurent, Ann. Sci. Éc. Norm. Supér., IV. Sér. 20, 391-441 (1987; Zbl 0646.58021)] associates to \(M\) the microcharacteristic cycles in the cotangent bundle \(T^* N\) of the normal bundle \(N\) of \(Y\) in \(X\). Projecting them to \(Y\), one defines the algebraic slopes of \(M\). The main results of the paper are the following:
(I) Comparison theorem. \( s\in ]1,\infty[\) is a transcendental slope of \(M\) at \(y\in Y\) if and only if it is an algebraic slope of \(M\) at \(y\).
(II) Integrality theorem. The function \(s \chi (\text{Gr}(s))\) has integral values. The Newton polygon of \(M\) has integral vertices.

MSC:

14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials
14M25 Toric varieties, Newton polyhedra, Okounkov bodies

Citations:

Zbl 0646.58021
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] J.-L. BRYLINSKI , A. DUBSON et M. KASHIWARA , Formule de l’indice pour les modules holonomes et obstruction d’Euler locale , C. R. Acad. Sc. Paris, serie I, 293, 1981 , pp. 573-577. MR 83a:32010 | Zbl 0492.58021 · Zbl 0492.58021
[2] J. DIEUDONNÉ et A. GROTHENDIECK , Etude Cohomologique des Faisceaux Cohérents , Éléments de Géométrie Algébrique III, Publ. I.H.E.S., 11, 1961 . Numdam | Zbl 0118.36206 · Zbl 0118.36206
[3] W. FULTON , Intersection theory , Ergebnisse der Math., Springer, 1984 . MR 85k:14004 | Zbl 0541.14005 · Zbl 0541.14005
[4] M. KASHIWARA , Systems of microdifferential equations , Progress in Mathematics, 34, Birkhäuser, 1983 . MR 86b:58113 | Zbl 0521.58057 · Zbl 0521.58057
[5] M. KASHIWARA , Vanishing cycles et holonomic systems of differential equations , Lect. Notes in Math., 1016, Springer, 1983 , pp. 134-142. MR 85e:58137 | Zbl 0566.32022 · Zbl 0566.32022
[6] M. KASHIWARA et T. KAWAÏ , Second microlocalization and asymptotic expansions , Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory, Lect. Notes in Physics, 126, Springer, 1980 , pp. 21-76. MR 81i:58038 | Zbl 0458.46027 · Zbl 0458.46027
[7] M. KASHIWARA et P. SCHAPIRA , Micro-hyperbolic systems , Acta Mathematica, 142, 1979 , pp. 1-55. MR 80b:58060 | Zbl 0413.35049 · Zbl 0413.35049
[8] M. KASHIWARA et P. SCHAPIRA , Sheaves on manifolds , Grundlehren der Math., 292, Springer, 1990 . MR 92a:58132 | Zbl 0709.18001 · Zbl 0709.18001
[9] Y. LAURENT , Théorie de la deuxième microlocalisation dans le domaine complexe , Progress in Math., 53, Birkhäuser, 1985 . MR 86k:58113 | Zbl 0561.32013 · Zbl 0561.32013
[10] Y. LAURENT , Polygone de Newton et b-fonctions pour les modules microdifférentiels , Ann. Ec. Norm. Sup. 4e série, 20, 1987 , pp. 391-441. Numdam | MR 89k:58282 | Zbl 0646.58021 · Zbl 0646.58021
[11] Y. LAURENT , Vanishing cycles of D-modules , Inv. Math., 112, 1993 , pp. 491-539. MR 94e:32025 | Zbl 0799.32031 · Zbl 0799.32031
[12] Y. LAURENT , Vanishing cycles of irregular D-modules , Prépublications de l’Institut Fourier, to appear in Comp. Math., 304, 1995 . Zbl 0940.32005 · Zbl 0940.32005
[13] Y. LAURENT et Z. MEBKHOUT , Image inverse d’un D-module et polygone de Newton , to appear. · Zbl 0993.35007
[14] B. MALGRANGE , Sur les points singuliers des équations différentielles , L’Enseignement Mathématique, 20, 1974 , pp. 147-176. MR 51 #4316 | Zbl 0299.34011 · Zbl 0299.34011
[15] Z. MEBKHOUT , Le théorème de positivité de l’irrégularité pour les D-modules , The Grothendieck Festschrift III, Progress in Mathematics, 88, 1990 , pp. 83-132. MR 92j:32031 | Zbl 0731.14007 · Zbl 0731.14007
[16] Z. MEBKHOUT , Le polygone de Newton d’un D-module , Conférence de La Rabida III, Progress in Mathematics, 134, 1996 , pp. 237-258. MR 97h:32015 | Zbl 0853.58095 · Zbl 0853.58095
[17] J.-P. RAMIS , Théorèmes d’indices Gevrey pour les équations différentielles ordinaires , Memoirs of the AMS, 48, 1984 , no. 296. MR 86e:34021 | Zbl 0555.47020 · Zbl 0555.47020
[18] C. SABBAH , Proximité évanescente, I. la structure polaire d’un D-module . Appendice en collaboration avec F. Castro., Compositio Math., 62, 1987 , pp. 283-328. Numdam | MR 90a:32014 | Zbl 0622.32012 · Zbl 0622.32012
[19] M. SATO , T. KAWAÏ et M. KASHIWARA , Hyperfunctions and pseudo-differential equations , Lect. Notes in Math., 287, Springer, 1980 , pp. 265-529. MR 54 #8747 | Zbl 0277.46039 · Zbl 0277.46039
[20] P. SCHAPIRA , Microdifferential systems in the complex domain , Grundlehren der Math., 269, Springer, 1985 . MR 87k:58251 | Zbl 0554.32022 · Zbl 0554.32022
[21] LE DUNG TRANG et B. TEISSIER , Limites d’espaces tangents en géométrie analytique , Comment. Math. Helv., 63, 1988 , pp. 540-578. MR 89m:32025 | Zbl 0658.32010 · Zbl 0658.32010
[22] H. WHITNEY , Tangents to an analytic variety , Annals of Math., 81, 1964 , pp. 496-549. MR 33 #745 | Zbl 0152.27701 · Zbl 0152.27701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.