×

zbMATH — the first resource for mathematics

Hodge numbers attached to a polynomial map. (English) Zbl 0944.32029
Consider a polynomial map \(f :{\mathbb C}^{n+1} \longrightarrow {\mathbb C}\). For \(r\) a big enough real number the map \(1/f : Z:= Z_r :={\mathbb C}^{n+1} \setminus f^{-1}(D_r) \rightarrow D^*_{1-r}\) is a locally trivial \(C^{\infty}\) fibration. The map \(1/f\) can be compactified, and a fiber over 0 can be added, so that we get a projective map \(p : X \rightarrow D_{1-r}\). Write \(Y = p^{-1}(0)\), and \(X \setminus Z = Y \cup \Delta\), where \(\Delta\) is the union of irreducible components of \(X \setminus Z\) not contained in \(Y\). Consider the universal covering \({\mathbb H}\) of \(D^*_{1-r}\) and let \(\widetilde{Z}:= Z \times_{D_{1/r}} {\mathbb H}\), which has the homotopy type of a generic fiber of \(f\). The cohomology groups of \(\widetilde{Z}\) with rational coefficients carry a limit mixed Hodge structure. The one on \(n\)–th cohomology group is called the limit MHS at infinity.
The authors study the equivariant Hodge numbers of this limit MHS in case that for all \(t \in {\mathbb C}\) which is not a critical value of \(f\), the closure of \({f = t}\) in projective space is non-singular.

MSC:
32S35 Mixed Hodge theory of singular varieties (complex-analytic aspects)
14E15 Global theory and resolution of singularities (algebro-geometric aspects)
14D07 Variation of Hodge structures (algebro-geometric aspects)
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] V. ARNOLD, A. VARCHENKO and S. GOUSSEIN-ZADÉ, Singularités des applications différentiable, 2e partie, Éditions Mir Moscou, 1986.
[2] E. CATTANI and A. KAPLAN, Polarized mixed Hodge structures and the local monodromy of a variation of Hodge structure, Invent. Math., 67 (1982), 101-115. · Zbl 0516.14005
[3] A. DIMCA, Singularities and topology of hypersurfaces, Universitext, Springer Verlag, 1992. · Zbl 0753.57001
[4] A. DIMCA, Hodge numbers of hypersurfaces, Abh. Math. Sem. Univ. Hamburg, 66 (1996), 377-386. · Zbl 0879.14018
[5] R. GARCÍA LÓPEZ and A. NÉMETHI, On the monodromy at infinity of a polynomial map, Compos. Math., 100:205-231, 1996. Appendix by R. García López and J. Steenbrink. · Zbl 0855.32016
[6] R. GARCÍA LÓPEZ and A. NÉMETHI, On the monodromy at infinity of a polynomial map, II, Compos. Math., 115 (1999), 1-20. · Zbl 0947.32014
[7] P. GRIFFITHS, On the periods of certain rational integrals, I, II, Annals of Math., 90 (1987), 460-541. · Zbl 0215.08103
[8] H. A. HAMM, Hodge numbers for isolated singularities of nondegenerate complete intersections, In Singularities (Oberwolfach, 1996), Progress in Math., 162, pp. 37-60. Birkhäuser, Basel, 1998. · Zbl 0926.32041
[9] V. NAVARRO AZNAR, Sur la théorie de Hodge-Deligne, Invent. Math., 90 (1987), 11-76. · Zbl 0639.14002
[10] A. NÉMETHI, The real Seifert form and the spectral pairs of isolated hypersurface singularities, Compos. Math., 98 (1995), 23-41. · Zbl 0851.14015
[11] A. NÉMETHI, On the Seifert form at infinity associated with polynomial maps, J. Math. Soc. Japan, 51 (1999), 63-70. · Zbl 0933.32042
[12] A. NÉMETHI, The semi-ring structure and the spectral pairs of sesqui-linear forms, Algebra Colloq., 1 (1994), 85-95. · Zbl 0814.11022
[13] A. NÉMETHI, The mixed Hodge structure of a complete intersection with isolated singularity, C.R. Acad. Sci. Paris, t. 321, Série I (1995), 447-452. · Zbl 0861.14007
[14] A. NÉMETHI and C. SABBAH, Semicontinuity of the spectrum at infinity, preprint. · Zbl 0973.32014
[15] F. PHAM, Vanishing homologies and the n variable saddlepoint method, In Proc. Symp. Pure Math., vol. 40 (1983), 319-333. · Zbl 0519.49026
[16] C. SABBAH, Hypergeometric periods for a tame polynomial, preprint. · Zbl 0967.32028
[17] M. SAITO, Mixed Hodge modules, Publ. RIMS Kyoto Univ., 26 (1990), 221-333. · Zbl 0727.14004
[18] J. SCHERK and J.H.M. STEENBRINK, On the mixed Hodge structure on the cohomology of the Milnor fibre, Math. Ann., 271 (1985), 641-665. · Zbl 0618.14002
[19] W. SCHMID, Variation of Hodge structures : the singularities of the period mapping, Invent. Math., 22 (1973), 211-319. · Zbl 0278.14003
[20] J.H.M. STEENBRINK, Limits of Hodge structures, Inv. Math., 31 (1976), 229-257. · Zbl 0312.14007
[21] J.H.M. STEENBRINK, Intersection form for quasi-homogeneous singularities, Compos. Math., 34 (1977), 211-223. · Zbl 0347.14001
[22] J.H.M. STEENBRINK, Mixed Hodge structure on the vanishing cohomology. In Real and Complex Singularities, Oslo 1977, pages 397-403, Alphen a/d Rhijn, 1977, Sijthoff & Noordhoff. · Zbl 0373.14007
[23] J.H.M. STEENBRINK, Mixed Hodge structures associated with isolated singularities, Proc. Symp. Pure Math., vol. 40 (1983), 513-536. · Zbl 0515.14003
[24] J.H.M. STEENBRINK and S. ZUCKER, Variation of mixed Hodge structure. I, Invent. Math., 80 (1985), 489-542. · Zbl 0626.14007
[25] J.H.M. STEENBRINK, Semicontinuity of the singularity spectrum, Invent. Math., 79 (1985), 557-565. · Zbl 0568.14021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.