Scaling limits and regularity results for a class of Ginzburg-Landau systems. (English) Zbl 0944.35006

The paper deals with the regularity and asymptotic behaviour of solutions of the Ginzburg–Landau system \[ u^\varepsilon_t-\Delta u^\varepsilon+{u^\varepsilon\over\varepsilon^2} (1-|u^\varepsilon|^2)=0 \] with \(u:{\mathbb R}^d\to {\mathbb R}^k\), which is the natural gradient flow of the energy \(e_\varepsilon(u)\) defined by \[ e_\varepsilon(u):={|\nabla u|^2\over 2}+{W(u)\over\varepsilon^2} \quad\text{with}\quad W(u):=\tfrac 14(1-|u|^2)^2. \] More generally the authors study the quasilinear system of PDE \[ u^\varepsilon_t-\Delta u^\varepsilon+{2-p\over p} {\nabla [e_\varepsilon(u_\varepsilon)]\over e_\varepsilon(u_\varepsilon)} +{u^\varepsilon\over\varepsilon^2}(1-|u^\varepsilon|^2)=0 \] for which \(\int [e_\varepsilon(u)]^{p/2}\) is a Lyapunov functional. In the case \(d>p=k\) the authors prove, under suitable regularity assumptions on the initial data, that the renormalized energy density \(e_\varepsilon(u^\varepsilon)/\ln(1/\varepsilon)\) concentrates for a short time on a codimension \(k\)-manifold flowing by mean curvature. This result confirms those previously obtained by other authors using matched asymptotic expansions. The larger part of the paper is however devoted to the proof of some \(\varepsilon\)-regularity theorems, saying that if a weighted integral of the energy density is “sufficiently small” in a region, then the energy density is bounded in a smaller region. As a byproduct this result leads to partial regularity theorems which are uniform in \(\varepsilon\). In the special case \(d=p=k=2\) a stronger result is obtained, replacing the smallness assumption by a boundedness assumption.
Reviewer: L.Ambrosio (Pisa)


35B25 Singular perturbations in context of PDEs
35K55 Nonlinear parabolic equations
35B65 Smoothness and regularity of solutions to PDEs
Full Text: DOI Numdam EuDML


[1] Ambrosio, L.; Soner, H.M., Level set approach to Mean curvature flow in arbitrary codimension, J. diff. geom., Vol. 43, 693-737, (1996) · Zbl 0868.35046
[2] Barles, G.; Soner, H.M.; Souganidis, P.E., Front propagation and phase field theory, SIAM J. cont. opt., Vol. 31, 2, 439-469, (1993) · Zbl 0785.35049
[3] Bauman, P.; Chen, C.N.; Phillips, D.; Sternberg, P., Vortex annihilation in nonlinear heat flow for Ginzburg-Landau systems, European J. appl. math., Vol. 6, 2, 115-126, (1995) · Zbl 0845.35042
[4] Bethuel, F.; Brezis, H.; Hélein, F, Asymptotics for the minimization of a Ginzburg-Landau functional, Calc. var., Vol. 1, 123-148, (1993) · Zbl 0834.35014
[5] Bethuel, F.; Brezis, H.; Hélein, F, Ginzburg-Landau vortices, (1994), Birkhäuser Boston · Zbl 0802.35142
[6] Brezis, H.; Merle, F.; Riviere, T., Quantization effects for −δu = u(1 − |u|2) in {\bfr}2, Archive rat. mech. anal., Vol. 126, 35-58, (1994) · Zbl 0809.35019
[7] Chen, X., Generation and propagation of the interface for reaction-diffusion equations, Jour. diff. equations, Vol. 96, 116-141, (1992) · Zbl 0765.35024
[8] Chen, Y.; Struwe, M., Existence and partial regularity results for the heat flow for harmonic maps, Math Z., Vol. 201, 83-103, (1989) · Zbl 0652.58024
[9] W, E, Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity, Physica D, Vol. 77, 383-404, (1994) · Zbl 0814.34039
[10] Evans, L.C.; Soner, H.M.; Souganidis, P.E., Phase transitions and generalized motion by curvature, Comm. pure appl. math., Vol. 65, 1097-1123, (1992) · Zbl 0801.35045
[11] Ilmanen, T., Convergence of the Allen-Cahn equation to brakke’s motion by Mean curvature, J. diff. geom., Vol. 38, 2, 417-461, (1993) · Zbl 0784.53035
[12] Jerrard, R.L., Fully nonlinear phase field equations and generalized Mean curvature motion, Comm PDE, Vol. 20, 233-265, (1995) · Zbl 0860.35063
[13] Jerrard, R.L., Lower bounds for generalized Ginzburg-Landau functionals, Center for nonlinear analysis research report no. 95-NA-020, (1995) · Zbl 0860.35063
[14] Jerrard, R.L.; Soner, H.M., Dynamics of Ginzburg-Landau vortices, Arch. rat. mech. anal., Vol. 142, 99-125, (1998) · Zbl 0923.35167
[15] Krylov, N.V.; Safonov, M.V., A certain property of solutions of parabolic equations with measurable coefficients, Math. USSR izvestia, Vol. 16, 1, 151-164, (1981) · Zbl 0464.35035
[16] Ladyzhenskya, O.A.; Solonnikov, V.A.; Uraltseva, N.N., Linear and quasilinear equations of parabolic type, Amer. math. soc., (1968), Providence, RI
[17] Lin, F.H., Solutions of Ginzburg-Landau equations and critical points of the renormalized energy, Ann. inst. H. Poincaré anal. non linéaire, Vol. 12, 5, 599-622, (1995) · Zbl 0845.35052
[18] Lin, F.H., Some dynamical properties of Ginzburg-Landau vortices, Comm. pure appl. math., Vol. 49, 4, 323-359, (1996) · Zbl 0853.35058
[19] Neu, J.C., Vortices in complex scalar fields, Physica D, Vol. 43, 385-406, (1990) · Zbl 0711.35024
[20] Pismen, L.M.; Rubinstein, J., Motion of vortex lines in the Ginzburg-Landau model, Physica D, Vol. 47, 353-360, (1991) · Zbl 0728.35090
[21] Rubinstein, J., Self-induced motion of line vortices, Quart. appl. math., Vol. 49, 1, 1-9, (1991) · Zbl 0728.35118
[22] Schoen, R., Analytic aspects of the harmonic map problem, () · Zbl 0551.58011
[23] Mete Soner, H., Motion of a set by the curvature of its boundary, Jour. diff. equations, Vol. 101, 2, 313-372, (1993) · Zbl 0769.35070
[24] Struwe, M., On the evolution of harmonic maps in higher dimensions, J. diff. geom., Vol. 28, 485-502, (1988) · Zbl 0631.58004
[25] Struwe, M., Variational methods, (1990), Springer-Verlag Berlin
[26] Struwe, M., On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions, Diff. and int. equations, Vol. 7, 6, 1613-1624, (1994) · Zbl 0809.35031
[27] Kuramoto, Y., Chemical waves, oscillations, and turbulence, (1984), Springer-Verlag Berlin · Zbl 0558.76051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.