Vesnin, A. Yu. Volumes of hyperbolic Löbell 3-manifolds. (English. Russian original) Zbl 0944.53022 Math. Notes 64, No. 1, 17-23 (1998); translation from Mat. Zametki 64, No. 1, 13-24 (1998). Author’s abstract: “In 1931, F. Löbell [Ber. Verh. Sächs. Akad. Leipzig 83, 167-174 (1931; Zbl 0002.40607)] constructed the first example of a closed orientable three-dimensional hyperbolic manifold. In the present paper, we study properties of closed hyperbolic 3-manifolds generalizing Löbell’s classical example. Explicit formulas for the volumes of these manifolds in terms of the Lobachevskij function are obtained”. Cited in 10 Documents MSC: 53C20 Global Riemannian geometry, including pinching 57M50 General geometric structures on low-dimensional manifolds Keywords:finite volume; hyperbolic manifold; Lobachevsky function Citations:Zbl 0002.40607 Software:SnapPea × Cite Format Result Cite Review PDF Full Text: DOI References: [1] É. B. Vinberg and O. V. Shvartsman, ”Discrete motion groups of spaces of constant curves,” in:Contemporary Problems in Mathematics. Fundamental Directions [in Russian], Vol. 29, Itogi Nauki i Tekhniki, VINITI, Moscow (1988), pp. 147–259. · Zbl 0787.22012 [2] J. A. Wolf,Spaces of Constant Curvature, Univ. of California, Berkeley, California (1972). [3] F. Klein,Vorlesungen Über Nicht-Euklidische Geometrie, Springer-Verlag, Berlin, (1928). [4] F. Löbell, ”Beispiele geschlossener dreidimensionaler Clifford-Kleinischer Räume negativer Krümmung,”Ber. Verh. Sächs. Akad. Leipzig. Math.-Phys. Kl.,83, 168–174 (1931). [5] A. Yu. Vesnin, ”Hyperbolic 3-manifolds of Löbell type,”Sibirsk. Mat. Zh. [Siberian Math. J.],28, No. 5, 50–53 (1987). · Zbl 0635.53020 [6] A. D. Mednykh and A. Yu. Vesnin, ”On three-dimensional hyperbolic manifolds of Löbell type,” in:Complex Analysis and Applications ’85, Sofia (1986), pp. 440–146. [7] A. D. Mednykh, ”Automorphism groups of hyperbolic 3-manifolds”Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.],285, No. 1, 40–44 (1985). · Zbl 0602.57010 [8] A. Yu. Vesnin, ”Hyperbolic 3-manifolds with common fundamental polyhedron”Mat. Zametki [Math. Notes],49, No. 6, 29–32 (1991). [9] M. Gromov, ”Hyperbolic manifolds according to Thurston and Jørgensen,” in:Lecture Notes in Math, Vol. 842, Springer, Berlin (1981), pp. 40–53. [10] B. N. Apanasov and I. S. Gutsul, ”Greatly symmetric totally geodesic surfaces and closed hyperbolic 3-manifolds which share a fundamental polyhedron,” in:Topology ’90 (B. Apanasov, B. W. Neumann, A. Ried, and L. Siebenmann, editors), de Gruyter, Berlin (1992), pp. 37–53. · Zbl 0836.57007 [11] B. Zimmermann, ”A note on hyperbolic 3-manifolds of the same volume,”Monatsh. Math.,117, 139–143 (1994). · Zbl 0789.57008 · doi:10.1007/BF01299317 [12] J. Weeks,SnapPea, Version 5/18/92, A program for the Macintosh to compute hyperbolic structures on 3-manifolds. [13] D. V. Alekseevskii, É. B. Vinberg, and A. S. Solodovnikov, ”Geometry of spaces of constant curvature,” in:Contemporary Problems in Mathematics. Fundamental Directions [in Russian], Vol. 29, Itogi Nauki i Tekhniki, VINITI, Moscow (1988), pp. 5–146. [14] R. Kellerhals, ”On the volume of hyperbolic polyhedra,”Math. Ann.,285, 541–569 (1989). · Zbl 0664.51012 · doi:10.1007/BF01452047 [15] J. Milnor, ”Hyperbolic geometry: the first 150 years,”Bull. Amer. Math. Soc.,6, 9–24 (1982). · Zbl 0486.01006 · doi:10.1090/S0273-0979-1982-14958-8 [16] E. M. Andreev, ”On convex polyhedra in Lobachevski spaces,”Mat. Sb. [Math. USSR-Sb.],81, No. 1, 445–447 (1970). [17] N. K. Al-Jubouri, ”On nonorientable hyperbolic 3-manifolds,”Chinese Quart. J. Math.,31, 9–18 (1980). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.