Penrose, Mathew D. A strong law for the longest edge of the minimal spanning tree. (English) Zbl 0944.60015 Ann. Probab. 27, No. 1, 246-260 (1999). Let \(f\) be a continuous density on a connected compact support set \(\Omega\) in \(\operatorname{Re}^{d}\) \((d \geq 2)\) that has smooth boundary \(\partial \Omega\). Assume \(f_{0}=\) \(\min_{\Omega}f > 0\) and define \(f_{1}=\) \(\min_{\partial \Omega}f\). Let \(\underline{X}_{n}=\) \((X_1, \dots, X_n)\) be a random sample from \(f\) and define \(Y_n\) to be the smallest \(r\) such that the union of balls of diameter \(r\) centered at \(X_1, \ldots, X_n\) is connected. This \(Y_n\) also represents the maximum edge-length of a minimum spanning tree of the vertex set \(\underline{X}_n\). It is shown that, as \(n \to \infty\), \(n \theta Y_{n}^{d}/\log n \to\) \(\max\{f_{0}^{-1}, 2(1-d^{-1})f_{1}^{-1}\}\) a.s., where \(\theta\) is the volume of the unit ball. This result disproves a conjecture made by E. Tabakis [in: From data to knowledge: theoretical and practical aspects of classification, data analysis, and knowledge organization, 222-230 (1996; Zbl 0897.62063)] that the limit is free of \(f\). Reviewer: H.N.Nagaraja (Columbus/Ohio) Cited in 19 Documents MSC: 60D05 Geometric probability and stochastic geometry 60G70 Extreme value theory; extremal stochastic processes 60F15 Strong limit theorems Keywords:geometric probability; connectedness; extreme values Citations:Zbl 0897.62063 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] APPEL, M. J. B. and RUSSO, R. P. 1996. The connectivity of a graph on uniform points in d 0, 1. Preprint, Univ. Iowa. [2] APPEL, M. J. B. and RUSSO, R. P. 1997. The minimum vertex degree of a graph on uniform d points in 0, 1. Adv. in Appl. Probab. 29 582 594. JSTOR: · Zbl 0899.05061 · doi:10.2307/1428077 [3] DUGUNDJI, J. 1966. Topology. Allyn and Bacon, Boston. · Zbl 0144.21501 [4] GRIMMETT, G. 1989. Percolation. Springer, New York. · Zbl 0691.60089 [5] KLARNER, D. A. 1967. Cell growth problems. Canad. J. Math. 19 851 863. · Zbl 0178.00904 [6] PENROSE, M. D. 1998. Extremes for the minimal spanning tree on normally distributed points. Adv. in Appl. Probab. 30 628 639. · Zbl 0919.60025 · doi:10.1239/aap/1035228120 [7] PENROSE, M. D. 1997. The longest edge of the random minimal spanning tree. Ann. Appl. Probab. 7 340 361. · Zbl 0884.60042 · doi:10.1214/aoap/1034625335 [8] PENROSE, M. D. 1997. On k-connectivity for a geometric random graph. [9] PENROSE, M. D. 1997. A strong law for the largest nearest-neighbour link between random points. J. London Math. Soc. · Zbl 0955.60009 · doi:10.1112/S0024610799008157 [10] TABAKIS, E. 1996. On the longest edge of the minimal spanning tree. In From Data toKnowledge W. Gaul and D. Pfeifer, eds. 222 230. Springer, New York. · Zbl 0897.62063 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.