Quantum Schubert calculus. (English) Zbl 0945.14031

Denote by \(W_{\vec{a}}\) Schubert varieties associated to \(\vec{a}\) and by \(\sigma_{\vec{a}}\in\text{H}^{2|\vec{a}|}(G,\mathbb{C})\) the corresponding elements in cohomology where \(G\) is the Grassmannian. The symbol \(W_a\) stands for a special Schubert variety associated to \((a,0,\dots,0)\). Choose general points \(p_1,\dots,p_N\in\mathbb{P}^1\) and general translates of the \(W_{\vec{a}}\). The Gromov-Witten intersection number \(\langle W_{\vec{a}_1},\dots,W_{\vec{a}_N}\rangle_d\) is, by a naive definition, the number of holomorphic maps \(f:\mathbb{P}^1\to G\) of degree \(d\) with the property that \(f(p_i)\in W_{\vec{a}_i}\) for all \(i=1,\dots,N\). For \(d=0\) one gets the original intersection number. The small quantum ring is the vector space \(\text{H}^\ast(G,\mathbb{C})[q]\) over \(C[q]\) with an associative product which obeys \[ \sigma_{\vec{a}_1}\ast\dots\ast\sigma_{\vec{a}_N}= \sum_{d\geq 0}q^d\left(\sum_{\vec{a}} \langle W_{\vec{a}},W_{\vec{a}_1},\dots,W_{\vec{a}_N}\rangle_d \sigma_{\vec{a}}\right). \] The paper generalizes Giambelli’s formula and Pieri’s formula to the small quantum ring. In the quantum Giambelli formula that reads \(\sigma_{\vec{a}}=\Delta_{\vec{a}}(\sigma_\ast)\) no higher terms in \(q\) arise. The Giambelli determinant in cohomology classes corresponding to special Schubert varieties is evaluated in \(\text{H}^\ast(G,\mathbb{C})[q]\). On the other hand, the quantum Pieri formula has a correction term, \[ \sigma_a\ast\sigma_{\vec{a}}= p_{a,\vec{a}}(\sigma_{\vec\ast})+ q\left(\sum_{\vec c}\sigma_{\vec c}\right), \] with an appropriate range of \(\vec c\). Before giving the proofs the Gromov-Witten number is defined rigorously by considering intersections of Schubert varieties on the moduli space \(\mathcal M_d\) of holomorphic maps of degree \(d\) from \(\mathbb{P}^1\) to \(G\) with \(\mathcal M_d\) being an open subscheme in the Grothendieck quoted scheme. As a corollary of the quantum Giambelli’s formula the author also shows a Vafa and Intriligator formula for the Gromov-Witten intersection number of special Schubert varieties.


14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
14M15 Grassmannians, Schubert varieties, flag manifolds
14J81 Relationships between surfaces, higher-dimensional varieties, and physics
81T20 Quantum field theory on curved space or space-time backgrounds
Full Text: DOI arXiv


[1] Bertram, A., Computing Schubert’s calculus with Severi residues,, (1996), Dekker New York, p. 1-10 · Zbl 0885.14023
[2] Bertram, A.; Daskalopoulos, G.; Wentworth, R., Gromov invariants for holomorphic maps from Riemann surfaces to Grassmannians, J. amer. math. soc., 9, 529-571, (1996) · Zbl 0865.14017
[3] Bott, R.; Tu, L., Differential forms in algebraic topology, (1982), Springer- Verlag New York · Zbl 0496.55001
[4] Fulton, W., Intersection theory, (1984), Springer-Verlag New York · Zbl 0541.14005
[5] W. Fulton, 1995, Enumerative geometry via quantum cohomology
[6] Gepner, D., Fusion rings and geometry, Comm. math. phys., 141, (1991) · Zbl 0752.17033
[7] Grothendieck, A., Techniques de construction et théorèmes d’existence en géometrie algébrique IV: LES schémas de Hilbert, Sém. bourbaki, 221, (1960/61) · Zbl 0236.14003
[8] Griffiths, P.; Harris, J., Principles of algebraic geometry, (1978), Wiley-Interscience New York · Zbl 0408.14001
[9] Hartshorne, R., Algebraic geometry, (1977), Springer-Verlag New York · Zbl 0367.14001
[10] Intriligator, K., Fusion residues, Mod. phys. lett. A, 6, 3543-3556, (1991) · Zbl 1020.81847
[11] Józefiak, T.; Lascoux, A.; Pragacz, P., Classes of determinantial varieties associated with symmetric and skew-symmetric matrices, Math. USSR izv, 18, 575-586, (1982) · Zbl 0489.14020
[12] Kempf, G.; Laksov, D., The determinantal formula of Schubert calculus, Acta math., 132, 153-162, (1974) · Zbl 0295.14023
[13] M. Kontsevich, Y. Manin, 1994, Gromov-Witten classes, quantum cohomology, and enumerative geometry · Zbl 0853.14020
[14] M. S. Ravi, J. Rosenthal, X. Wang, 1993, Degree of the generalized Plücker embedding of a Quot scheme and quantum cohomology
[15] Ruan, Y.; Tian, G., A mathematical theory of quantum cohomology, J. differential geom., 259-367, (1995) · Zbl 0860.58005
[16] H. Shahrouz
[17] B. Siebert, G. Tian, 1994, On quantum cohomology rings of Fano manifolds and a formula of Vafa and Intriligator · Zbl 0974.14040
[18] Strømme, S.A., On parametrized rational curves in Grassmann varieties, (1987), Lecture Notes in Math New York/Berlin, p. 251-272
[19] Vafa, C., Topological mirrors and quantum rings, Essays on mirror manifolds, (1992), International Press
[20] E. Witten, 1993, The Verlinde algebra and the cohomology of the Grassmannian · Zbl 0863.53054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.