Kangni, Kinvi; Toure, Saliou Spherical Fourier transform of type \(\delta\). (Transformation de Fourier sphérique de type \(\delta\).) (French) Zbl 0945.43004 Ann. Math. Blaise Pascal 3, No. 2, 117-133 (1996). Let \(K\) be a compact subgroup of a locally compact unimodular group \(G\) and let \(\delta\in\widehat K\). A Banach space valued function on \(G\) is quasibounded if it is bounded by a seminorm (= a positive lower semicontinuous submultiplicative function) on \(G\). A spherical function of type \(\delta\) is a continuous quasibounded function \(\phi:G\to\operatorname{Hom} (E,E)\) \((E\) a finite-dimensional Banach space) such that (i) \(\phi(k\times k^{-1})=\phi(x)\), \(x\in G\), \(k\in K\); (ii) \(\chi_\delta*\phi=\phi=\phi*\chi_\delta\); and (iii) the map \(u_\phi\) defined by \(u_\phi(f)=\int_Gf(x)\phi(x^{-1})dx\) gives an irreducible representation of the algebra \({\mathcal K}^\#_\delta(G)\) of \(K\)-central continuous compactly supported functions \(f\) on \(G\) such that \(\overline \chi_\delta*f=f=f*\overline\chi_\delta\). The main result gives a one-to-one correspondence between spherical functions of type \(\delta\) and height \(m\) and \(m\)-dimensional irreducible representations of \({\mathcal K}^\#_\delta (G)\). This result and a notion of generalised Gelfand transform on the noncommutative algebra \({\mathcal K}^\#_\delta(G)\) combine to give a definition of spherical Fourier transform of type \(\delta\). When \((G,K)\) is a Gelfand pair and \(\delta\) is the trivial one-dimensional representation one gets the usual spherical Fourier transform. Reviewer: Krishnan Parthasarathy (MR 99c:22007) Cited in 5 Documents MSC: 43A90 Harmonic analysis and spherical functions 22D10 Unitary representations of locally compact groups Keywords:locally compact unimodular group; Banach space; spherical function; irreducible representations; generalised Gelfand transform; spherical Fourier transform PDF BibTeX XML Cite \textit{K. Kangni} and \textit{S. Toure}, Ann. Math. Blaise Pascal 3, No. 2, 117--133 (1996; Zbl 0945.43004) Full Text: DOI Numdam EuDML OpenURL References: [1] Barut, A.O. and Raczka, R.. Theory of group representations and applications. Polish Scientific PublishersWarszawa1980. · Zbl 0471.22021 [2] Dieudonne, J. : Eléments d’Analyse Tome VIGauthier-Villars, Paris 6è , 1971. [3] Kangni, K. : Transformation de Fourier et Représentation unitaire sphériques de type d. Thèse de Doctorat de 3è cycle, FAST, Université d’Abidjan. Nov. 1994. [4] Mackey, G.W. : Infinite-dimensional group representationsAnnals of Mathematics Vol. 54, N°1, November 1951. [5] Mautner, F.I. : Unitary representations of locally compact groups II. Annals of Mathematics, Vol. 52, n°3, November 1950. · Zbl 0039.02201 [6] Sugiura, M. : Unitary représentation and HarmonicAnalysis Kodansha Scientific Books1928. · Zbl 0344.22001 [7] Warner, G. : Harmonie analysis on semi-simple Lie Group. Tome ISpringer-VerlagBerlinHeidelberg New-York1972. · Zbl 0265.22020 [8] Warner, G. : Harmonic Analysis on semi-simple Lie Groups. Tome II. Springer-VerlagBerlinHeidelberg New-York1972. · Zbl 0265.22021 [9] Wers, G.L. -Boothby, W.H. : Symmetric Spaces. Department of Mathematics, Washington UniversityST. Louis Missouri1972. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.