Gelfand, Israel; Retakh, Vladimir; Shubin, Mikhail Fedosov manifolds. (English) Zbl 0945.53047 Adv. Math. 136, No. 1, 104-140 (1998). A review of the geometry of Fedosov manifolds is given. A Fedosov manifold is a triple \((M,\omega,\Gamma)\), where \((M,\omega)\) is a symplectic manifold and \(\Gamma\) is a symplectic connection on \(M\). The famous result of B. V. Fedosov gives a canonical deformation quantization on such a manifold [see J. Differ. Geom. 40, No. 2, 213-238 (1994; Zbl 0812.53034)]. In the first section connections on almost symplectic manifolds are considered. Sections 2 and 3 are devoted to symplectic connections and their curvature properties. In the last two sections, the authors introduce normal coordinates on a Fedosov manifold and analyse the properties of the curvature tensor. Reviewer: Dmitry Kalinin (Kazan’) Cited in 4 ReviewsCited in 59 Documents MSC: 53D05 Symplectic manifolds (general theory) Keywords:symplectic connection; Fedosov manifold; curvature Citations:Zbl 0812.53034 × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Bayen, F.; Flato, M.; Fronsdal, C.; Lichnerowicz, A.; Sternheimer, D., Deformation theory and quantization. I, Ann. Phys., 111, 61-110 (1978) · Zbl 0377.53024 [2] Bryant, R. L., An introduction to Lie groups and symplectic geometry, Geometry and Quantum Field Theory. Geometry and Quantum Field Theory, IAS/Park City Mathematics Series, 1 (1995), Institute for Advanced StudyAm. Math. Society: Institute for Advanced StudyAm. Math. Society Providence, p. 7-181 · Zbl 0853.53024 [3] Cartan, E., Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion, C.R. Acad. Sci. Ser. A, 174, 593-597 (1922) · JFM 48.0854.02 [4] Cartan, E., Sur les variétés à connexion affine et la théorie de la relativité généralisée, Ann. Ecole Norm. Sup., 40, 325-412 (1923) · JFM 49.0542.02 [5] Cartan, E., On Manifolds with an Affine Connection and the Theory of General Relativity (1986), Bibliopolis: Bibliopolis Napoli · Zbl 0657.53001 [6] Deligne, P., Déformations de l’Algèbre des Fonctions d’une Variété Symplectique: Comparison entre Fedosov et De Wilde, Lecompte, Selecta Math. New Series, 1, 667-697 (1995) · Zbl 0852.58033 [7] De Wilde, M.; Lecompte, P. B.A., Existence of star-products on exact symplectic manifolds, Ann. Inst. Fourier, 35, 117-143 (1985) · Zbl 0536.58038 [8] Dubrovin, B. A.; Fomenko, A. T.; Novikov, S. P., Modern Geometry—Methods and Applications (1992), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0751.53001 [9] Eisenhart, L. P., Non-Riemannian Geometry (1927), Am. Math. Soc: Am. Math. Soc Providence · Zbl 0041.29403 [10] Fedosov, B. V., A simple geometric construction of deformation quantization, J. Differential Geom., 40, 213-238 (1994) · Zbl 0812.53034 [11] Fedosov, B. V., Deformation Quantization and Index Theory (1996), Akad. Verlag: Akad. Verlag Berlin · Zbl 0867.58061 [12] Habermann, K., Basic properties of symplectic Dirac operators, Commun. Math. Phys., 184, 629-652 (1997) · Zbl 1008.58024 [13] Helgason, S., Differential Geometry, Lie Groups, and Symmetric Spaces (1978), Academic Press: Academic Press San Diego · Zbl 0451.53038 [14] Hess, H., Connections on symplectic manifolds and geometric quantization, Differential Geometric Methods in Math. Physics. Conf. Aix-en-Province and Salamanca, 1979. Differential Geometric Methods in Math. Physics. Conf. Aix-en-Province and Salamanca, 1979, Lecture Notes in Math., 836 (1980), Springer-Verlag: Springer-Verlag Berlin/New York, p. 153-166 · Zbl 0464.58012 [15] Kobayashi, S.; Nomizu, K., Foundations of Differential Geometry (1963), Interscience: Interscience New York · Zbl 0119.37502 [16] M. Kontsevich, Deformation quantization of Poisson manifolds, I, September 29, 1997; M. Kontsevich, Deformation quantization of Poisson manifolds, I, September 29, 1997 · Zbl 1058.53065 [17] B. Kostant, On the canonical symplectic connection in the cotangent bundle of a Lie group, 1997; B. Kostant, On the canonical symplectic connection in the cotangent bundle of a Lie group, 1997 [18] Lee, H.-C., A kind of even-dimensional geometry and its application to exterior calculus, Amer. J. Math., 65, 433-438 (1943) · Zbl 0060.38302 [19] Lee, H.-C., On even-dimensional skew-metric spaces and their group of transformations, Amer. J. Math., 67, 321-328 (1945) · Zbl 0060.38704 [20] Lemlein, V. G., On spaces with symmetric almost symplectic connection, Dokl. Akad. Nauk SSSR, 115, 655-658 (1957) · Zbl 0080.37801 [21] Lemlein, V. G., The curvature tensor and certain types of spaces of symmetric, almost symplectic connection, Dokl. Akad. Nauk SSSR, 117, 755-758 (1957) · Zbl 0080.37802 [22] Lemlein, V. G., Locally projective manifolds with a symmetric almost symplectic connection, Uspekhi Mat. Nauk, 15, 219-220 (1960) [23] Lemlein, V. G., Locally centro-projective spaces and connections in a differentiable manifold, Litovskii Mat. Sbornik, 4, 41-132 (1964) [24] Levi-Civita, T., Nozione di parallelismo in una varieta qualunque e consequente specificazione geometrica della curvature Riemanniana, Rend. Palermo, 42, 173-205 (1917) · JFM 46.1125.02 [25] Levin, Yu. I., Affine connections associated with a skew-symmetric tensor, Dokl. Akad. Nauk SSSR, 128, 668-671 (1959) · Zbl 0097.37603 [26] Libermann, P., Sur le problème d’équivalence de certaines structures infinitésimales, Ann. Mat. Pura Appl., 36, 27-120 (1954) · Zbl 0056.15401 [27] Libermann, P., Sur les structures presque complexes et autres structures infinitésimales régulières, Bull. Soc. Math. France, 83, 195-224 (1955) · Zbl 0064.41702 [28] Libermann, P., Problèmes d’équivalence et géométrie symplectique, Astérisque, 107-108, 43-68 (1983) · Zbl 0529.53030 [29] Lichnerowicz, A., Quantum mechanics and deformations of geometric dynamics, (Barut, A. O., Quantum Theory, Groups, Fields and Particles (1983), Reidel: Reidel Dordrecht), 3-82 · Zbl 0531.58054 [30] Morvan, J. M., Quelques invariants topologiques en géométrie symplectique, Ann. Inst. H. Poincaré, 38, 349-370 (1983) · Zbl 0521.53040 [31] O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity (1983), Academic Press: Academic Press San Diego · Zbl 0531.53051 [32] Sharpe, R. W., Cartan’s Generalization of Klein’s Erlangen Program (1997), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0876.53001 [33] Tamarkin, D. E., Topological invariants of connections on symplectic manifolds, Funct. Anal. Appl., 29, 45-56 (1995) · Zbl 0878.58002 [34] Thomas, T. Y., The Differential Invariants of Generalized Spaces (1934), Cambridge Univ. Press: Cambridge Univ. Press London · JFM 60.0363.02 [35] Tondeur, Ph., Affine Zusammenhänge auf Mannigfaltigkeiten mit fast-symplectischer Struktur, Comment. Math. Helv., 36, 234-244 (1961) · Zbl 0103.38901 [36] Vaisman, I., Symplectic curvature tensors, Monatsh. Math., 100, 299-327 (1985) · Zbl 0571.53025 [37] Vaisman, I., Lectures on the Geometry of Poisson Manifolds (1994), Birkhäuser: Birkhäuser Basel · Zbl 0852.58042 [38] Veblen, O., Invariants of Quadratic Differential Forms. Invariants of Quadratic Differential Forms, Cambridge Tracts in Math. and Math. Physics, 24 (1927), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · JFM 53.0681.01 [39] Veblen, O.; Thomas, T. Y., The geometry of paths, Trans. Amer. Math. Soc., 25, 551-608 (1923) · JFM 50.0504.02 [40] Vey, J., Déformation du crochet de Poisson sur une variété symplectique, Comment. Math. Helv., 50, 421-454 (1975) · Zbl 0351.53029 [41] A. Weinstein, Deformation quantization, Séminaire Bourbaki, juin, Paris, 1994; A. Weinstein, Deformation quantization, Séminaire Bourbaki, juin, Paris, 1994 · Zbl 0854.58026 [42] Weyl, H., Reine Infinitesimalgeometrie, Math. Z., 2, 384-411 (1918) · JFM 46.1301.01 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.