×

Crossing estimates and convergence of Dirichlet functions along random walk and diffusion paths. (English) Zbl 0945.60063

The authors establish a crossing estimate for a Dirichlet function \(f\) along the path of a transient reversible Markov chain \(\{X_n\}\) and prove that the process \(\{f(X_n)\): \(n\geq 1\}\) converges almost surely and in \(L^2\). Similar results are also established for a transient symmetric diffusion on a Riemannian manifold. Results on crossing estimates are recently generalized to symmetric right Markov processes by Z.-Q. Chen, P. Fitzsimmons and R. Song [“Crossing estimates for symmetric Markov processes”].

MSC:

60J45 Probabilistic potential theory
60F15 Strong limit theorems
31C25 Dirichlet forms
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ancona, A. (1990). Théorie du potentiel sur les graphes et les variétés, École d’ Été de Probabilités de Saint-Flour XVIII. Lecture Notes in Math. 1427 1-112. Springer, Berlin. · Zbl 0719.60074
[2] Benjamini, I. and Schramm, O. (1996). Random walks and harmonic functions on infinite planar graphs using square tilings. Ann. Probab. 24 1219-1238. · Zbl 0862.60053
[3] Blumenthal, R. M. and Getoor, R. K. (1968). Markov Processes and Potential Theory. Academic Press, New York. · Zbl 0169.49204
[4] Brelot, M. (1969). Axiomatique des Fonctions Harmoniques, 2nd ed. Presses de l’Univ. Montréal. · Zbl 0148.10401
[5] Cartwright, D. and Soardi, P. M. (1989). Convergence to ends for random walk on the automorphism group of a tree. Proc. Amer. Math. Soc. 107 817-823. · Zbl 0682.60059
[6] Deny, J. (1970). Méthodes hilbertiennes en théorie du potentiel. In Potential Theory 121-201. Edizioni Cremonese, Rome. · Zbl 0212.13401
[7] Doob, J. L. (1957). Conditional Brownian motion and the boundary limits of harmonic functions. Bull. Soc. Math. France 85 431-458. · Zbl 0097.34004
[8] Doob, J. L. (1962). Boundary properties of functions with finite Dirichlet integrals. Ann. Inst. Fourier 12 573-621. · Zbl 0121.08604
[9] Fuglede, B. (1972). Finely Harmonic Functions. Lecture Notes in Math. 289. Springer, Berlin. · Zbl 0248.31010
[10] Fukushima, M. (1980). Dirichlet Forms and Markov Processes. North-Holland, Amsterdam. · Zbl 0422.31007
[11] Fukushima, M., Oshima, Y. and Takeda, M. (1994). Dirichlet Forms and Symmetric Markov Processes. de Gruyter, Berlin. · Zbl 0838.31001
[12] Hervé, M. and Hervé R.-M. (1969). Les fonctions surharmoniques associées a un opérateur elliptique du second ordre a coefficients discontinus. Ann. Inst. Fourier 19 305-359. · Zbl 0176.09801
[13] Lyons, T. J. and Stoica, L. (1999). The limits of stochastic integrals of differential forms. Ann. Probab. 27 1-49. · Zbl 0969.60078
[14] Lyons, T. J. and Zhang, T. S. (1994). Decomposition of Dirichlet processes and its application, Ann. Probab. 22 494-524. · Zbl 0804.60044
[15] Lyons, T. J. and Zheng, W. A. (1988). A crossing estimate for the canonical process on a Dirichlet space and tightness result. Astérisque 157-158 249-271. · Zbl 0654.60059
[16] Soardi, P. M. (1994). Potential Theory on Infinite Networks. Lecture Notes Math. 1590. Springer, Berlin. · Zbl 0818.31001
[17] Stampacchia, G. (1965). Le probl eme de Dirichlet pour les équations elliptiques du second ordre a coefficients discontinus. Ann. Inst. Fourier 15 (1) 189-258. · Zbl 0151.15401
[18] Yamasaki, N. (1986). Ideal limit of discrete Dirichlet functions. Hiroshima Math. J. 16 353-360. · Zbl 0604.31008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.