# zbMATH — the first resource for mathematics

Whittle estimator for finite-variance non-Gaussian time series with long memory. (English) Zbl 0945.62085
Let $$\{X_t\}$$ be a zero-mean Gaussian time series with long memory. Then the series has spectral density $f(x)= |x|^{-\alpha} L(1/|x|),\quad x\in [-\pi,\pi],\;0<\alpha<1,$ where $$L$$ is a slowly varying function at infinity. Define $$Y_t =G(X_t)$$ where $$G$$ is a polynomial. Assume that $$EY_t=0$$ and that $$Y_t$$ has spectral density $s_{\theta}(x)= \sigma^2 |x|^{-\alpha_G(\theta)} L_{G,\theta}(1/|x|),\quad \sigma>0,\;0\leq\alpha_G(\theta)<1,$ $$L_{G,\theta}$$ is a slowly varying function and $$\theta$$ belongs to a compact subset of $$R^p$$. Let $$\hat{\theta}_N$$ be the Whittle estimator of the true value of the parameter $$\theta=\theta_0$$ based on $$Y_1,\dots, Y_N$$.
The authors show that under some general assumptions $$\hat{\theta}_N$$ is a consistent estimator of $$\theta_0$$. If $$Y_t$$ is Gaussian, then $$\sqrt N(\hat{\theta}_N-\theta_0)$$ is asymptotically Gaussian. If $$Y_t$$ is not Gaussian, then $$\sqrt N$$ consistency of the Whittle estimator may not hold and the limit may not be Gaussian, even if $$Y_t$$ has short memory.
Reviewer: J.Anděl (Praha)

##### MSC:
 62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH) 62F12 Asymptotic properties of parametric estimators 62E20 Asymptotic distribution theory in statistics
Full Text:
##### References:
 [1] Avram, F. and Taqqu, M. S. (1987). Noncentral limit theorems and Appell polynomials. Ann. Probab. 15 767-775. · Zbl 0624.60049 [2] Beran, J. (1992). Statistical methods for data with long-range dependence (with discussion). Statist. Sci. 7 404-427. [3] Breuer, P. and Major, P. (1983). Central limit theorems for nonlinear functionals of Gaussian fields. J. Multivariate Anal. 13 425-441. · Zbl 0518.60023 [4] Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods, 2nd ed. Springer, New York. · Zbl 0709.62080 [5] Dahlhaus, R. (1989). Efficient parameter estimation for self similar processes. Ann. Statist. 17 1749-1766. · Zbl 0703.62091 [6] Dehling, H. and Taqqu, M. S. (1989). The empirical process of some long-range dependent sequences with an application to U-statistics. Ann. Statist. 17 1767-1783. · Zbl 0696.60032 [7] Dobrushin, R. L. and Major, P. (1979). Non-central limit theorems for non-linear functions of Gaussian fields. Z. Wahrsch. Verw. Gebiete 50 27-52. · Zbl 0397.60034 [8] Fox, R. and Taqqu, M. S. (1986). Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series. Ann. Statist. 14 517-532. · Zbl 0606.62096 [9] Giraitis, L. and Koul, H. (1997). Estimation of the dependence parameter in linear regression with long-range dependent errors. Stochastic Process. Appl. 71 207-224. · Zbl 0933.62059 [10] Giraitis, L., Leipus, R. and Surgailis, D. (1996). The change-point problem for dependent observations. J. Statist. Plann. Inference 53 297-310. · Zbl 0856.62073 [11] Giraitis, L. and Surgailis, D. (1985). CLT and other limit theorems for functionals of Gaussian processes. Probab. Theory Related Fields 70 191-212. · Zbl 0575.60024 [12] Giraitis, L. and Surgailis, D. (1986). Multivariate Appell polynomials and the central limit theorem. In Dependence in Probability and Statistics (E. Eberlein and M. S. Taqqu, eds.) 21-71. Birkhäuser, Boston. · Zbl 0605.60031 [13] Giraitis, L. and Surgailis, D. (1990). A central limit theorem for quadratic forms in strongly dependent linear variables and application to asymptotical normality of Whittle’s estimate. Probab. Theory Related Fields 86 87-104. · Zbl 0717.62015 [14] Giraitis, L. and Taqqu, M. S. (1997). Limit theorems for bivariate Appell polynomials I. Central limit theorems. Probab. Theory Related Fields 107 359-381. · Zbl 0873.60007 [15] Giraitis, L. and Taqqu, M. S. (1998). Central limit theorems for quadratic forms with timedomain conditions. Ann. Probab. 26 377-398. · Zbl 0943.60018 [16] Giraitis, L., Taqqu, M. S. and Terrin, N. (1998). Limit theorems for bivariate Appell polynomials II. Non-central limit theorems. Probab. Theory Related Fields 110 333-367. · Zbl 0927.60031 [17] Hannan, E. J. (1973). The asymptotic theory of linear time series models. J. Appl. Probab. 10 130-145. JSTOR: · Zbl 0269.62075 [18] Ho, H. C. and Hsing, T. (1996). On the asymptotic expansion of the empirical process of long memory moving averages. Ann. Statist. 24 992-1024. · Zbl 0862.60026 [19] Ho, H. C. and Hsing, T. (1997). Limit theorems for functionals of moving averages. Ann. Probab. 25 1636-1669. · Zbl 0903.60018 [20] Koul, H. L. and Surgailis, D. (1997). Asymptotic expansion of M-estimators with long memory errors. Ann. Statist. 25 818-850. · Zbl 0885.62101 [21] Robinson, P. M. (1994). Semiparametric analysis of long-memory time series. Ann. Statist. 22 515-539. · Zbl 0795.62082 [22] Robinson, P. M. (1995). Gaussian semiparametric estimation of long range dependence. Ann. Statist. 23 1630-1661. · Zbl 0843.62092 [23] Taqqu, M. S. (1975). Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrsch. Verw. Gebiete 31 287-302. · Zbl 0303.60033 [24] Taqqu, M. S. (1979). Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrsch. Verw. Gebiete 50 53-83. · Zbl 0397.60028 [25] Taqqu, M. S. and Teverovsky, V. (1998). On estimating the intensity of long-range dependence in finite and infinite variance series. In A Practical Guide to Heavy Tails: Statistical Techniques and Applications (R. Adler, R. Feldman and M. S. Taqqu, eds.) 177-217. Birkhäuser, Boston. · Zbl 0922.62091 [26] Taqqu, M. S., Teverovsky, V. and Willinger, W. (1995). Estimators for long-range dependence: an empirical study. Fractals 3 785-798. [Reprinted in Fractal Geometry and Analysis (C. J. G. Evertsz, H.-O. Peitgen and R. F. Voss, eds.) World Scientific, Singapore.] · Zbl 0864.62061 [27] Zygmund, A. (1979). Trigonometric Series I, II. Cambridge Univ. Press. · Zbl 0628.42001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.