Kolwankar, Kiran M.; Gangal, Anil D. Local fractional Fokker-Planck equation. (English) Zbl 0945.82005 Phys. Rev. Lett. 80, No. 2, 214-217 (1998). Summary: We propose a new class of differential equations, which we call local fractional differential equations. They involve local fractional derivatives and appear to be suitable to deal with phenomena taking place in fractal space and time. A local fractional analog of the Fokker-Planck equation has been derived starting from the Chapman-Kolmogorov condition. We solve the equation with a specific choice of the transition probability and show how subdiffusive behavior can arise. Cited in 2 ReviewsCited in 107 Documents MSC: 82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics Keywords:local fractional differential equations; local fractional derivatives PDF BibTeX XML Cite \textit{K. M. Kolwankar} and \textit{A. D. Gangal}, Phys. Rev. Lett. 80, No. 2, 214--217 (1998; Zbl 0945.82005) Full Text: DOI arXiv References: [1] T. F. Nonnenmacher, J. Phys. A 23 pp L697– (1990) · Zbl 0709.60546 [2] W. G. Glöckle, J. Stat. Phys. 71 pp 741– (1993) · Zbl 0945.82559 [3] M. F. Schlesinger, J. Stat. Phys. 36 pp 639– (1984) · Zbl 0587.60081 [4] B. B. Mandelbrot, SIAM Rev. 10 pp 422– (1968) · Zbl 0179.47801 [5] M. Giona, J. Phys. A 25 pp 2093– (1992) · Zbl 0755.60067 [6] H. E. Roman, J. Phys. A 25 pp 2107– (1992) · Zbl 0755.60068 [7] W. Wyss, J. Math. Phys. 27 pp 2782– (1986) · Zbl 0632.35031 [8] W. R. Schneider, J. Math. Phys. 30 pp 134– (1989) · Zbl 0692.45004 [9] G. Jumarie, J. Math. Phys. 33 pp 3536– (1992) · Zbl 0761.60071 [10] H. C. Fogedby, Phys. Rev. Lett. 73 pp 2517– (1994) [11] G. M. Zaslavsky, Physica (Amsterdam) 76D pp 110– (1994) [12] K. M. Kolwankar, Chaos 6 pp 505– (1996) · Zbl 1055.26504 [13] K. B. Oldham, in: The Fractional Calculus (1974) [14] K. S. Miller, in: An Introduction to the Fractional Calculus and Fractional Differential Equations (1993) · Zbl 0789.26002 [15] K. M. Kolwankar, Pramana J. Phys. 48 pp 49– (1997) [16] H. Risken, in: The Fokker-Planck Equation (1984) [17] E. W. Montroll, in: On the Wonderful World of Random Walks in Nonequilibrium Phenomenon II: From Stochastic to Hydrodynamics, (1984) [18] W. Feller, in: An Introduction to Probability Theory and Its Applications (1968) · Zbl 0155.23101 [19] K. M. Kolwankar, in: Proceedings of the Conference on Fractals in Engineering, Archanon, France, 1997 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.