zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
High-frequency soliton-like waves in a relaxing medium. (English) Zbl 0946.35094
Summary: A nonlinear evolution equation is suggested to describe the propagation of waves in a relaxing medium. It is shown that in the low-frequency approach this equation is reduced to the KdVB equation. The high-frequency perturbations are described by a new nonlinear equation. This equation has ambiguous looplike solutions. It is established that a dissipative terrn, with a dissipation parameter less than some limit value, does not destroy these looplike solutions.

35Q53KdV-like (Korteweg-de Vries) equations
74A25Molecular, statistical, and kinetic theories (mechanics of deformable solids)
37K40Soliton theory, asymptotic behavior of solutions
Full Text: DOI