On the correlation for Kac-like models in the convex case. (English) Zbl 0946.35508

Summary: The aim of this paper is to study the behavior as \(m\) tends to \(\infty\) of a family of measures \(\exp [ -\Phi^{(m)} (x)] dx^{(m)}\) on \(\mathbb{R}^m\), where \(\Phi^{(m)}\) is a potential on \(\mathbb{R}^m\) which is a perturbation “in a suitable sense” of the harmonic potential \(\sum_j x^2_j\).


35Q99 Partial differential equations of mathematical physics and other areas of application
35B50 Maximum principles in context of PDEs
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
Full Text: DOI


[1] J. Avron, I. Herbst, and B. Simon, Schrödinger operators with magnetic fields, III Atoms in homogeneous magnetic fields,Commun. Math. Phys. 79:529–572 (1981). · Zbl 0464.35086
[2] P. Billingsley,Convergence of Probability Measures (Wiley, New York, 1968). · Zbl 0172.21201
[3] H. J. Brascamp and E. Lieb, On extensions of the Brunn-Minkovski and Prékopa-Leindler Theorems, including inequalities for log concave functions, and with an application to diffusion equation,J. Funct. Anal. 22 (1976). · Zbl 0334.26009
[4] E. Brézin, Course, ENS (1989).
[5] M. Brunaud and B. Helffer, Un problème de double puits provenant de la théorie statistico-mécanique des changements de phase (ou relecture d’un cours de M. Kac), Preprint (March 1991).
[6] P. Cartier, Inégalités de corrélation en mécanique statistique,Séminaire Bourbaki 25ème année, 1972–73, No. 431 (Lecture Notes in Mathematics, No. 383; Springer-Verlag, Berlin).
[7] R. S. Ellis,Entropy, Large Deviations, and Statistical Mechanics (Springer, New York, 1985). · Zbl 0566.60097
[8] C. Fortuin, P. Kasteleyn, and J. Ginibre, Correlation inequalities on some partially ordered sets,Commun. Math. Phys. 22:89–103 (1971). · Zbl 0346.06011
[9] J. Glimm and A. Jaffe,Quantum Physics (A Functional Integral Point of View), 2nd ed. (Springer-Verlag, Berlin). · Zbl 0461.46051
[10] F. Guerra, J. Rosen, and B. Simon, TheP({\(\phi\)})2 Euclidean quantum field theory as classical statistical mechanics,Ann. Math. 101:111–259 (1975).
[11] B. Helffer, On Schrödinger equation in large dimension and connected problems in statistical mechanics, inDifferential Equations with Applications to Mathematical Physics, W. F. Ames, E. M. Harrell II, and J. V. Herod, eds. (Academic Press, New York, 1992), pp. 153–166.
[12] B. Helffer, Around a stationary phase theorem in large dimension,J. Funct. Anal., to appear. · Zbl 0806.47064
[13] B. Helffer, Problèmes de double puits provenant de la théorie statistico-mécanique des changements de phase, II Modèles de Kac avec champ magnétique, étude de modèles près de la température critique, Preprint (March 1992).
[14] B. Helffer and J. Sjöstrand, Multiple wells in the semi-classical limit, I,Commun. PDE 9(4):337–408 (1984); II,Ann. Inst. H. Poincaré Phys. Theor. 42(2):127–212 (1985). · Zbl 0546.35053
[15] B. Helffer and J. Sjöstrand, Semiclassical expansions of the thermonamic limit for a Schrödinger equation,Astérisque 210:135–181 (1992). · Zbl 0788.35109
[16] B. Helffer and J. Sjöstrand, Semiclassical expansions of the thermonamic limit for a Schrödinger equation II,Helv. Phys. Acta 65:748–765 (1992). · Zbl 0979.35520
[17] M. Kac, Statistical mechanics of some one-dimensional systems, inStudies in Mathematical Analysis and Related Topics: Essays in Honor of Georges Polya (Stanford University Press, Stanford, California, 1962), pp. 165–169.
[18] M. Kac,Mathematical Mechanisms of Phase Transitions (Gordon and Breach, New York, 1966).
[19] D. Robert, Propriétés spectrales d’opérateurs pseudo-différentiels,Commun. PDE 3(9):755–826 (1978). · Zbl 0392.35056
[20] D. Ruelle,Statistical Mechanics (Benjamin, New York, 1969).
[21] B. Simon,The P({\(\phi\)})2 Euclidean Quantum Field Theory (Princeton University Press, Princeton, New Jersey, 1974).
[22] B. Simon,Functional Integration and Quantum Physics (Academic Press, New York, 1979). · Zbl 0434.28013
[23] B. Simon,The Statistical Mechanics of Lattice Gases (Princeton University Press, Princeton, New Jersey, 1993). · Zbl 0804.60093
[24] I. M. Singer, B. Wong, S. T. Yau, and S. S. T. Yau, An estimate of the gap of the first two eigenvalues of the Schrödinger operator,Ann. Scuola Norm. Sup. Pisa (4) 12:319–333 (1985). · Zbl 0603.35070
[25] J. Sjöstrand, Potential wells in high dimensions I,Ann. Inst. H. Poincaré Phys. Theor. 58(1) (1993).
[26] J. Sjöstrand, Potential wells in high dimensions II, more about the one well case,Ann. Inst. H. Poincaré Phys. Theor. 58(1) (1993).
[27] J. Sjöstrand, Exponential convergence of the first eigenvalue divided by the dimension, for certain sequences of Schrödinger operator,Astérisque 210:303–326 (1992). · Zbl 0796.35123
[28] J. Sjöstrand, Schrödinger in high dimensions, asymptotic constructions and estimates, inProceeding of the French-Japanese Symposium on Algebraic Analysis and Singular Perturbations (CIRM, Luminy, France, 1991).
[29] J. Sjöstrand, Evolution equations in a large number of variables,Math. Nachr., to appear.
[30] A. D. Sokal, Mean field bounds and correlation inequalities,J. Stat. Phys. 28:431–439 (1982).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.