zbMATH — the first resource for mathematics

An abstract uniform boundedness result. (English) Zbl 0946.46003
Summary We prove a uniform boundedness result for spaces which have a family of projection operators satisfying certain properties. The result is used to show that the space of Pettis integrable functions is barrelled.

46A32 Spaces of linear operators; topological tensor products; approximation properties
46A08 Barrelled spaces, bornological spaces
46E40 Spaces of vector- and operator-valued functions
Full Text: EuDML
[1] ANTOSIK P.-SWARTZ C.: Matrix Methods in Analysis. Springer-Verlag, Heidelberg, 1985. · Zbl 0564.46001
[2] DIESTEL J.-UHL J.: Vector Measures. Amer. Math. Soc, Providence, RI, 1977. · Zbl 0369.46039
[3] DREWNOWSKI L.: Equivalence of Brooks-Jewett. Vitali-Hahn-Saks and Nikodym Theorems, Bull. Acad. Polon. Sci. Sér. Sci. Tech. 20 (1972), 725-731. · Zbl 0243.28011
[4] DREWNOWSKI L.-FLORENCIO M., PAÚL P.: The space of Pettis integrable functions is barrelled. Proc Amer. Math. Soc 114 (1994), 687-694. · Zbl 0747.46026
[5] DREWNOWSKI L.-FLORENCIO M., PAÚL P.: Uniform boundedness of operators and barrelledness in spaces with Boolean algebras of projections. Atti. Sem. Mat. Fis. Univ. Modena 41 (1993), 317-329. · Zbl 0849.46002
[6] DUNFORD N.-SCHWARTZ J.: Linear Operators I. Wiley, New York, 1958. · Zbl 0084.10402
[7] HILLE E.-PHILLIPS R.: Functional Analysis and Semigroups. Amer. Math. Soc, Providence, RI, 1957. · Zbl 0078.10004
[8] LEE PENG YEE, SWARTZ C.: Continuity of superposition operators on sequence spaces. New Zealand J. Math. 24 (1995), 41-52. · Zbl 0840.46001
[9] PETTIS B. J.: Integration in vector spaces. Trans. Amer. Math Soc 44 (1938), 277-304. · Zbl 0019.41603
[10] RAO K. P. S. B.-RAO M. B.: Theory of Charges. Academic Press, New York, 1983. · Zbl 0516.28001
[11] WILANSKY A.: Modern Methods in Topological Vector Spaces. McGraw-Hill, New York, 1978. · Zbl 0395.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.