×

The strong invariance principle for the sums of random vectors from the domain of attraction of stable law. (English. Ukrainian original) Zbl 0946.60019

Theory Probab. Math. Stat. 53, 57-63 (1996); translation from Teor. Jmovirn. Mat. Stat. 53, 51-57 (1995).
Let \(\{\xi_i, i\geq 1\}\) be \(d\)-dimensional i.i.d. r.v. (independent identically distributed random vectors) that belong to the domain of attraction of a stable law \(G_{\alpha}, \alpha \neq 1,\) of Lévy-Feldheim type. The author considers the strong invariance principle and proves the following approximation for the sums \(S_N = \sum_{i=1}^n \xi_i.\) If the absolute pseudomoment \(\nu (l)<\infty\) for \(l=1+[\alpha]\) and all the mixed pseudomoments \(\mu (s_1,\ldots, s_d)=0\) for \(s_1,\ldots, s_d =0,\ldots, l-1,\) then \(\{\xi_i, i\geq 1\}\) may be defined on the probability space where the sequence of i.i.d. stable r.v. \(\{\eta_i, i\geq 1\}\) are defined such that \(\left|S_N - \sum_{i=1}^n \eta_i\right|= o(n^{1/\alpha - \lambda}), \lambda=\lambda(\alpha,d),\) a.s.

MSC:

60F15 Strong limit theorems
60F17 Functional limit theorems; invariance principles
PDFBibTeX XMLCite