×

The second lowest extremal invariant measure of the contact process. II. (English) Zbl 0946.60088

The behaviour of the contact process on infinite connected graphs of bounded degree is studied, and some problems left open in Part I of the paper [ibid. 25, No. 4, 1846-1871 (1997; Zbl 0903.60085)] are solved. Attention is paid to continuity properties of the survival probability and the recurrence probability; in particular it is shown that for homogeneous graphs the survival probability can only be discontinuous at the survival point, and the recurrence probability can only be discontinuous at the recurrence point.
Reviewer: Jan Seidler

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory

Citations:

Zbl 0903.60085
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aizenman, M. and Grimmett, G. (1991). Strict monotonicity for critical points in percolation and ferromagnetic models. J. Statist. Phys. 63 817-835.
[2] Bezuidenhout, C. and Grimmett, G. (1990). The critical contact process dies out. Ann. Probab. 18 1462-1482. · Zbl 0718.60109
[3] Durrett, R. (1988). Lecture Notes on Interacting Particle Systems and Percolation. Wadsworth and Brooks/Cole, Belmont, CA. · Zbl 0659.60129
[4] Durrett, R. (1996). Probability: Theory and Examples, 2nd ed. Duxbury Press, Belmont, CA. · Zbl 1202.60001
[5] Durrett, R. and Schinazi, R. B. (1995). Intermediate phase for the contact process on a tree. Ann. Probab. 23 668-673. · Zbl 0830.60093
[6] Durrett, R., Schonmann, R. H. and Tanaka, N. I. (1989). The contact process on a finite set III. The critical case. Ann. Probab. 17 1303-1321. · Zbl 0692.60085
[7] Lalley, S. (1999). Growth profile and invariant measures for the weakly supercritical contact process on a homogeneous tree. Ann. Probab. 27 206-225. · Zbl 0954.60090
[8] Lalley, S. and Sellke, T. (1998). Limit set of a weakly supercritical contact process on a homogeneous tree. Ann. Probab. 26 644-657. · Zbl 0937.60093
[9] Liggett, T. M. (1985). Interacting Particle Systems. Springer, New York. · Zbl 0559.60078
[10] Madras, N. and Schinazi, R. B. (1992). Branching random walk on trees. Stochastic Process. Appl. 42 255-267. · Zbl 0763.60042
[11] Madras, N., Schinazi, R. B. and Schonmann, R. H. (1994). On the critical behavior of the contact process in deterministic inhomogeneous environments. Ann. Probab. 22 1140-1159. · Zbl 0821.60091
[12] Morrow, G. J., Schinazi, R. B. and Zhang, Y. (1994). The critical contact process on a homogeneous tree. J. Appl. Probab. 31 250-255. · Zbl 0798.60091
[13] Pemantle, R. (1992). The contact process on trees. Ann. Probab. 20 2089-2116. · Zbl 0762.60098
[14] Pemantle, R. and Stacey, A. (1999). Unpublished manuscript.
[15] Salzano, M. and Schonmann, R. H. (1997). The second lowest extremal invariant measure of the contact process. Ann. Probab. 25 1846-1871. · Zbl 0903.60085
[16] Salzano, M. and Schonmann, R. H. (1998). A new proof that for the contact process on homogeneous trees local survival implies complete convergence. Ann. Probab. 26 1251-1258. · Zbl 0937.60094
[17] Schonmann, R. H. (1998). The triangle condition for contact processes on homogeneous trees. J. Statist. Phys. 90 1429-1440. · Zbl 0922.60087
[18] Stacey, A. M. (1996). The existence of an intermediate phase for the contact process on trees. Ann. Probab. 24 1711-1726. · Zbl 0878.60061
[19] Wu, C. C. (1995). The contact process on a tree-behavior near the first transition. Stochastic Process. Appl. 57 99-112. · Zbl 0821.60093
[20] Zhang, Y. (1996). The complete convergence theorem of the contact process on trees. Ann. Probab. 24 1408-1443. · Zbl 0876.60092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.