[1] |
Ben Israel, A.; Mond, B.: What is invexity?. J. austral. Math. soc. Ser. B 28, 1-9 (1985) · Zbl 0603.90119 |

[2] |
Craven, B. D.: Invex functions and constrained local minima. Bull. austral. Math. soc. 24, 357-366 (1981) · Zbl 0452.90066 |

[3] |
Craven, B. D.: Duality for the generalized convex fractional programs. Generalized convacity in optimization and economics, 473-490 (1981) |

[4] |
Craven, B. D.; Glover, B. M.: Invex functions and duality. J. austral. Math. soc. Ser. A 39, 1-20 (1985) · Zbl 0565.90064 |

[5] |
Egudo, R. R.; Hanson, M. A.: Multiobjective duality with invexity. J. math. Anal. appl. 126, 469-477 (1987) · Zbl 0635.90086 |

[6] |
Hanson, M. A.: A duality theorem in nonlinear programming with nonlinear constraints. Austral. J. Statist. 3, 67-71 (1961) |

[7] |
Hanson, M. A.: On sufficiency of the Kuhn--Tucker conditions. J. math. Anal. appl. 80, 544-550 (1981) · Zbl 0463.90080 |

[8] |
Jeyakumar, V.: Strong and weak invexity in mathematical programming. Math. oper. Res. 55, 109-125 (1985) · Zbl 0566.90086 |

[9] |
Jeyakumar, V.; Mond, B.: On generalized convex mathematical programming. J. austral. Math. soc. Ser. B 34, 43-53 (1992) · Zbl 0773.90061 |

[10] |
Khan, Z. A.: Sufficiency and duality theory for a class of differentiable multiobjective programming problems with invexity. Recent development in mathematical programming (1991) · Zbl 0787.90079 |

[11] |
Khan, Z. A.; Hanson, M. A.: On ratio invexity in mathematical programming. J. math. Anal. appl. 205, 330-336 (1997) · Zbl 0872.90094 |

[12] |
Mangasarian, O. L.: Nonlinear programming. (1969) · Zbl 0194.20201 |

[13] |
Reiland, T. W.: Nonsmooth invexity. Bull. austral. Math. soc. 42, 437-446 (1990) · Zbl 0711.90072 |

[14] |
Singh, C.; Hanson, M. A.: Multiobjective fractional programming duality theory. Naval res. Logist. 38, 925-933 (1991) · Zbl 0749.90068 |

[15] |
Suneja, S. K.; Lalitha, C. S.: Multiobjective fractional programming involving ${\rho}$-invex and related function. Opsearch 30, 1-14 (1993) · Zbl 0793.90081 |

[16] |
T. Weir, A note on invex functions and duality in generalized fractional programming, Research Report, Department of Mathematics, The University of New South Wales, ACT 2600, Australia, 1990. · Zbl 0726.90073 |