zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Influence of delayed viral production on viral dynamics in HIV-1 infected patients. (English) Zbl 0946.92011
Summary: We present and analyze a model for the interaction of human immunodeficiency virus type 1 (HIV-1) with target cells that includes a time delay between initial infection and the formation of productively infected cells. Assuming that the variation among cells with respect to this `intracellular’ delay can be approximated by a gamma distribution, a highly flexible distribution that can mimic a variety of biologically plausible delays, we provide analytical solutions for the expected decline in plasma virus concentration after the initiation of antiretroviral therapy with one or more protease inhibitors. We then use the model to investigate whether the parameters that characterize viral dynamics can be identified from biological data. Using nonlinear least-squares regression to fit the model to simulated data in which the delays conform to a gamma distribution, we show that good estimates for free viral clearance rates, infected cell death rates, and parameters characterizing the gamma distribution can be obtained. For simulated data sets in which the delays were generated using other biologically plausible distributions, reasonably good estimates for viral clearance rates, infected cell death rates, and mean delay times can be obtained using the gamma-delay model. For simulated data sets that include added simulated noise, viral clearance rate estimates are not as reliable. If the mean intracellular delay is known, however, we show that reasonable estimates for the vital clearance rate can be obtained by taking the harmonic mean of viral clearance rate estimates from a group of patients. These results demonstrate that it is possible to incorporate distributed intracellular delays into existing models for HIV dynamics and to use these refined models to estimate the half-lift of free virus from data on the decline in HIV-1 RNA following treatment.

92C50Medical applications of mathematical biology
45J05Integro-ordinary differential equations
62J02General nonlinear regression
Full Text: DOI
[1] Ho, D. D.; Neumann, A. U.; Perelson, A. S.; Chen, W.; Leonard, J. M.; Markowitz, M.: Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123 (1995)
[2] Wei, X.; Ghosh, S. K.; Taylor, M. E.; Johnson, V. A.; Emini, E. A.; Deutsch, P.; Lifson, J. D.; Bonhoeffer, S.; Nowak, M. A.; Hahn, B. H.; Saag, M. S.; Shaw, G. M.: Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373, 117 (1995)
[3] Perelson, A. S.; Neumann, A. U.; Markowitz, M.; Leonard, J. M.; Ho, D. D.: HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271, 1582 (1996)
[4] Coffin, J. M.: HIV population dynamics in-vivo: implications for genetic-variation, pathogenesis, and therapy. Science 267, 483 (1995)
[5] Coffin, J. M.: HIV viral dynamics. Aids 10, S75 (1996)
[6] Carpenter, C. C. J.; Fischl, M. A.; Hammer, S. M.; Hirsch, M. S.; Jacobsen, D. M.; Katzentein, D. A.; Montaner, J. S. G.; Richman, D. D.; Saag, M. S.; Schooley, R. T.; Thompson, M. A.; Vella, S.; Yeni, P. G.; Volberding, P. A.: Antiretroviral therapy for HIV-infection in 1996: recommendations of an international panel. J. am. Med. assoc. 276, 146 (1996)
[7] Richman, D. D.: HIV therapeutics. Science 272, 1886 (1996)
[8] Herz, A. V. M.; Bonhoeffer, S.; Anderson, R. M.; May, R. M.; Nowak, M. A.: Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay. Proc. natl. Acad. sci. USA 93, 7247 (1996)
[9] Danner, S. A.; Carr, A.; Leonard, J. M.; Lehman, L. M.; Gudiol, F.; Gonzales, J.; Raventos, A.; Rubio, R.; Bouza, E.; Pintado, V.; Aguado, A. G.; Delomas, J. G.; Delgado, R.; Borleffs, J. C. C.; Hsu, A.; Valdes, J. M.; Boucher, C. A. B.; Cooper, D. A.; Gimeno, C.; Clotet, B.; Tor, J.; Ferrer, E.; Martinez, P. L.; Moreno, S.; Zancada, G.; Alcami, J.; Noriega, A. R.; Pulido, F.; Glassman, H. N.: A short-term study of the safety pharmocokinetics, and efficacy of ritonavir, an inhibitor of HIV-1 protease. New engl. J. med. 333, 1528 (1995)
[10] Lavie, A.; Schlichting, I.; Vetter, I. R.; Konrad, M.; Reinstein, J.; Goody, R. S.: The bottleneck in AZT activation. Nature medicine 3, 922 (1997)
[11] Dimitrov, D. S.; Willey, R. L.; Sato, H.; Chang, L. -J.; Blumenthal, R.; Martin, M. A.: Quantitation of human immunodeficiency virus type 1 infection kinetics. J. virol. 67, 2182 (1993)
[12] Pellegrino, M. G.; Li, G. R.; Potash, M. J.; Volsky, D. J.: Contribution of multiple rounds of viral entry and reverse transcription of expression to human immunodeficiency virus type 1. J. biol. Chem. 266, 1783 (1991)
[13] Perelson, A. S.; Essunger, P.; Cao, Y. Z.; Vesanen, M.; Hurley, A.; Saksela, K.; Markowitz, M.; Ho, D. D.: Decay characteristics of HIV-1 infected compartments during combination therapy. Nature 387, 188 (1997)
[14] N.A.J. Hatings, J.B. Peacock, Statistical Distributions, Wiley, New York, 1975
[15] N. Mac Donald, Biological Delay Systems: Linear Stability Theory, Cambridge University, Cambridge, 1989
[16] Kern, D.; Collins, M.; Fultz, T.; Detmer, J.; Hamren, S.; Peterkin, J. J.; Sheridan, P.; Urdea, M.; White, R.; Yeghiazarian, T.; Todd, J.: An enhanced-sensitivity branched-DNA assay for quantification of human-immunodeficiency-virus type-1 RNA in plasma. J. clin. Microbiol. 34, 3196 (1996)
[17] Michie, C. A.; Mclean, A.; Alcock, C.; Beverley, P. C. L.: Lifespan of human lymphocyte subsets defined by CD45 isoforms. Nature 360, 264 (1992)
[18] I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals Series and Products, Academic Press, New York, 1980, p. 18 · Zbl 0521.33001