×

zbMATH — the first resource for mathematics

Mathematical problems for the next century. (English) Zbl 0947.01011
The author lists 18 problems, chosen with respect to three criteria: (i) Simple statement; (ii) Personal acquaintance with the problem; (iii) Belief that the question, its solution, partial results, or even attempts at its solution are likely to have great importance for mathematics and its development in the next century.
The problems are: 1. The Riemann hypothesis, 2. The Poincaré conjecture, 3. Does P = NP?, 4. Integer zeros of a polynomial, 5. Height bounds for Diophantine curves, 6. Finiteness of the number of relative equilibria in celestial mechanics, 7. Distribution of points on the 2-sphere, 8. Introduction of dynamics into economic theory, 9. The linear programming problem, 10. The closing lemma, 11. Is one-dimensional dynamics generally hyperbolic?, 12. Centralizers of diffeomorphisms, 13. Hilbert’s 16th problem, 14. Lorentz attractor, 15. Navier-Stokes equations, 16. The Jacobian conjecture, 17. Solving polynomial equations, 18. Limits of intelligence.

MSC:
01A67 Future perspectives in mathematics
00A05 Mathematics in general
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abraham, R. and Marsden, J. (1978).Foundations of Mechanics. Addison-Wesley Publishing Co., Reading, Mass. · Zbl 0393.70001
[2] Babin, A.V. and Vishik, M.I. (1983). Attractors of partial differential evolution equations and their dimension.Russian Math. Surveys 38, 151- 213. · Zbl 0541.35038 · doi:10.1070/RM1983v038n04ABEH004209
[3] Barvinok, A. and Vershik, A. (1993). Polynomial-time, computable approximation of families of semi-algebraic sets and combinatorial complexity.Amer. Math. Soc. Trans. 155, 1–17. · Zbl 0784.68037
[4] Bass, H., Connell, E., and Wright, D. (1982). The Jacobian conjecture: reduction on degree and formal expansion of the inverse.Bull. Amer. Math. Soc. (2) 7, 287–330. · Zbl 0539.13012 · doi:10.1090/S0273-0979-1982-15032-7
[5] BCSS: Blum, L, Cucker, F., Shub, M., and Smale, S. (1997).Complexity and Real Computation, Springer-Verlag. · Zbl 0948.68068
[6] Blum, L, Shub, M., and Smale, S. (1989). On a theory of computation and complexity over the real numbers: NP-completness, recursive functions and universal machines.Bulletin of the Amer. Math. Soc. (2)21, 1–46. · Zbl 0681.03020 · doi:10.1090/S0273-0979-1989-15750-9
[7] Blum, L. and Smale, S. (1993). The Gödel incompleteness theorem and decidability over a ring. Pages 321-339 in M. Hirsch, J. Marsden, and M. Shub (editors),From Topology to Computation: Proceedings of the Smalefest, Springer-Verlag. · Zbl 0793.03066
[8] Browder, F. (ed.), (1976).Mathematical Developments Arising from Hilbert Problems, American Mathematical Society, Providence, Rl. · Zbl 0326.00002
[9] Brownawell, W. (1987). Bounds for the degrees in the Nullstellensatz.Annals of Math. 126, 577–591. · Zbl 0641.14001 · doi:10.2307/1971361
[10] Chern, S. and Smale, S. (eds.) (1970).Proceedings of the Symposium on Pure Mathematics, vol. XIV, American Mathematical Society, Providence, Rl. · Zbl 0204.07602
[11] Chorin, A., and Marsden, J. (1993).A Mathematical Introduction to Fluid Mechanics, 3rd edition, Springer-Verlag, New York. · Zbl 0774.76001
[12] Chorin, A., Marsden, J., and Smale, S. (1977). Turbulence Seminar, Berkeley 1976-77,Lecture Notes in Math.615, Springer-Verlag, New York.
[13] Cucker, F., Koiran, P., and Smale, S. (1997). A polynomial time algorithm for Diophantine equations in one variable. To appear. · Zbl 0920.11085
[14] Debreu, G. (1959).Theory of Value, John Wiley & Sons, New York. · Zbl 0193.20205
[15] Dulac, H. (1923). Sur les cycles limites.Bull. Soc. Math. France 51, 45–188. · JFM 49.0304.01
[16] Écalle, J. (1992).Introduction aux Fonctions Analysables et Preuve Constructive de la Conjecture de Dulac. Hermann, Paris, · Zbl 1241.34003
[17] van den Essen, A. (1997). Polynomial automorphisms and the Jacobian conjecture, inAlgèbre non commutative, groupes quantiques et invariants, septième contact Franco-Belge, Reims, Juin 1995, eds. J. Alev and G. Cauchon, Société mathématique de France, Paris.
[18] Freedman, M. (1982). The topology of 4-manifolds.J. Diff. Geom. 17, 357–454. · Zbl 0528.57011
[19] Garey, M. and Johnson, D. (1979).Computers and Intractability, Freeman, San Francisco. · Zbl 0411.68039
[20] Grötschel, M., Lovâsz, L., and Schrijver, A. (1993).Geometric Algorithms and Combinatorial Optimization, Springer-Verlag, New York. · Zbl 0837.05001
[21] Guckenheimer, J. and Holmes, P. (1990).Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, third printing, Springer-Verlag, New York. · Zbl 0515.34001
[22] Guckenheimer, J. and Williams, R.F. (1979). Structural stability of Lorenz attractors.Publ. Math. IHES 50, 59–72. · Zbl 0436.58018
[23] Hayashi, S. (1997). Connecting invariant manifolds and the solution of the C1-stability conjecture and ft-stability conjecture for flows.Annals of Math. 145, 81–137. · Zbl 0871.58067 · doi:10.2307/2951824
[24] Hirsch, M. and Smale, S. (1974).Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, New York, · Zbl 0309.34001
[25] llyashenko, J. (1985). Dulac’s memoir ”On limit cycles” and related problems of the local theory of differential equations.Russian Math. Surveys VHO, 1–49. · Zbl 0668.34032 · doi:10.1070/RM1985v040n06ABEH003701
[26] llyashenko, Yu. (1991).Finiteness Theorems for Limit Cycles, American Mathematical Society, Providence, Rl.
[27] llyashenko, Yu. and Yakovenko, S. (1995). Concerning the Hilbert 16th problem.AMS Translations, series 2, vol.165, AMS, Providence, Rl. · Zbl 0819.00005
[28] Jakobson, M. (1971). On smooth mappings of the circle onto itself.Math. USSR Sb. 14, 161–185. · Zbl 0241.58006 · doi:10.1070/SM1971v014n02ABEH002611
[29] Kuijlaars, A.B.J. and Saff, E.B. (1997). Asymptotics for minimal discrete energy on the sphere.Trans. Amer. Math. Soc, to appear. · Zbl 0901.11028
[30] Kuz’mina, R., (1977). An upper bound for the number of central configurations in the plane n-body problem.Sov. Math. Dok. 18,818–821. · Zbl 0383.70011
[31] Lang, S. (1991).Number Theory III, vol. 60 ofEncyclopaedia of Mathematical Sciences, Springer-Verlag, New York. · Zbl 0744.14012
[32] Linz, A., de Melo, W., and Pugh, C. (1977), in Geometry and Topology,Lecture Notes in Math.597, Springer-Verlag, New York.
[33] Liu, V. (1992). An example of instability for the Navier-Stokes equations on the 2-dimensional torus.Commun. PDE 17, 1995–2012. · Zbl 0781.35054 · doi:10.1080/03605309208820911
[34] Lloyd, N.G. and Lynch, S. (1988). Small amplitude limit cycles of certain Lienard systems.Proceedings Roy. Soc. London 418, 199–208. · Zbl 0657.34030 · doi:10.1098/rspa.1988.0079
[35] Lorenz, E. (1963). Deterministic non-periodic flow.J. Atmosph. Sci. 20,c 130–141. · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[36] Manders, K.L. and Adleman, L. (1978). NP-complete decision problems for binary quadratics.J. Comput. System Sci. 16, 168–184. · Zbl 0369.68030 · doi:10.1016/0022-0000(78)90044-2
[37] McMullen, C. (1994). Frontiers in complex dynamics.Bull. Amer. Math. Soc. (2)31, 155–172. · Zbl 0807.30013 · doi:10.1090/S0273-0979-1994-00519-1
[38] de Melo, W. and van Strien, S. (1993).One-Dimensional Dynamics. Springer-Verlag, New York. · Zbl 0791.58003
[39] Palis, J. and Yoccoz, J.C. (1989). (1) Rigidity of centralizers of diffeo- morphisms.Ann. Scient Ecole Normale Sup. 22, 81–98; (2) Centralizer of Anosov diffeomorphisms.Ann. Scient. Ecole Normale Sup. 22, 99-108. · Zbl 0709.58022
[40] Palmore, J. (1976). Measure of degenerative relative equilibria. I.Annals of Math. 104, 421–429. · Zbl 0332.58008 · doi:10.2307/1970964
[41] Petrovsk\(\pi\), I.G. and Landis, E.M. (1957). On the number of limit cycles of the equationdy/dx = Pfc,y)/Q(x,y), whereP and Q are polynomials.Mat. Sb. N.S. 43 (85), 149–168 (in Russian), and (1960)Amer. Math. Soc. Transi. (2) 14, 181-200.
[42] Petrovskif, I.G. and Landis, E.M. (1959). Corrections to the articles ”On the number of limit cycles of the equationdy/dx =P(x,y)/Q(>c,y), whereP and Q are polynomials.”Mat. Sb. N.S. 48 (90), 255–263 (in Russian)
[43] Penrose, R. (1991).The Emperor’s New Mind, Penguin Books.
[44] Poincaré, H. (1953).Oeuvres, VI. Gauthier-Villars, Paris. Deuxième Complément à L’Analysis Situs.
[45] Peixoto, M. (1962). Structural stability on two-dimensional manifolds.Topology 1, 101–120. · Zbl 0107.07103 · doi:10.1016/0040-9383(65)90018-2
[46] Pugh, C. (1967). An improved closing lemma and a general density theorem.Amer. J. Math. 89, 1010–1022. · Zbl 0167.21804 · doi:10.2307/2373414
[47] Pugh, C. and Robinson, C. (1983). The C1 closing lemma including Hamiltonians.Ergod. Theory Dynam. Systems 3, 261–313. · Zbl 0548.58012
[48] Rakhmanov, E.A., Saff, E.B., and Zhou, Y.M. (1994). Minimal discrete energy on the sphere.Math. Res. Lett. 1, 647–662. · Zbl 0839.31011
[49] Robinson, C. (1989). Homoclinic bifurcation to a transitive attractor of Lorenz type.Non-linearity 2, 495–518. · Zbl 0704.58031
[50] Rudin, W. (1995). Injective polynomial maps are automorphisms.Amer. Math. Monthly 102, 540–543. · Zbl 0972.32015 · doi:10.2307/2974770
[51] Ruelle, D. and Takens, F. (1971). On the nature of turbulence.Commun. Math. Phys. 20, 167–192. · Zbl 0223.76041 · doi:10.1007/BF01646553
[52] Samuelson, P. (1971).Foundations of Economic Analysis, Atheneum, New York. · Zbl 0214.19303
[53] Saff, E. and Kuijlaars, A. (1997). Distributing many points on a sphere.Mathematical Intelligencer 10, 5–11. · Zbl 0901.11028 · doi:10.1007/BF03024331
[54] Schrijver, A. (1986).Theory of Linear and Integer Programming, John Wiley & Sons. · Zbl 0665.90063
[55] Shi, S. (1982). On limit cycles of plane quadratic systems.Sei. Sin. 25, 41–50. · Zbl 0494.34016
[56] Shub, M. (1970). Appendix to Smale’s paper: Diagrams and relative equilibria in manifolds, Amsterdam, 1970.Lecture Notes in Math. 197, Springer-Verlag, New York.
[57] Shub, M. and Smale, S. (1993). Complexity of Bezout’s theorem, III: condition number and packing.J. of Complexity 9, 4–14. · Zbl 0846.65018 · doi:10.1006/jcom.1993.1002
[58] Shub, M. and Smale, S. (1994). Complexity of Bezout’s theorem, V: polynomial time.Theoret. Comp. Sci. 133, 141–164. · Zbl 0846.65022 · doi:10.1016/0304-3975(94)90122-8
[59] Shub, M. and Smale, S. (1995). On the intractibility of Hubert’s Nullstellensatz and an algebraic version of ”P = NP”,Duke Math. J. 81, 47–54. · Zbl 0882.03040 · doi:10.1215/S0012-7094-95-08105-8
[60] Smale, S. (1963). Dynamical systems and the topological conjugacy problem for diffeomorphisms, pages 490-496 in:Proceedings of the International Congress of Mathematicians, Inst. Mittag-Leffler, Sweden, 1962. (V. Stenström, ed.)
[61] Smale, S. (1963). A survey of some recent developments in differential topology.Bull. Amer. Math. Soc. 69, 131–146. · Zbl 0133.16507 · doi:10.1090/S0002-9904-1963-10901-5
[62] Smale, S. (1967). Differentiable dynamical systems.Bull. Amer. Math. Soc. 73, 747–817. · Zbl 0202.55202 · doi:10.1090/S0002-9904-1967-11798-1
[63] Smale, S. (1970). Topology and mechanics, I and II.Invent. Math. 10, 305–331 andInvent Math. 11, 45-64. · Zbl 0202.23201 · doi:10.1007/BF01418778
[64] Smale, S. (1976). Dynamics in general equilibrium theory.Amer. Economic Review 66, 288–294.
[65] Smale, S. (1980).Mathematics of Time, Springer-Verlag, New York. · Zbl 0451.58001
[66] Smale, S. (1981). Global analysis and economics, pages 331-370 inHandbook of Mathematical Economics 1, editors K.J. Arrow and M.D. Intrilligator. North-Holland, Amsterdam. · Zbl 0477.90014
[67] Smale, S. (1990). The story of the higher-dimensional Poincaré conjecture.Mathematical Intelligencer 12, no. 2, 40–51. Also in M. Hirsch, J. Marsden, and M. Shub, editors,From Topology to Computation: Proceedings of the Smalefest, 281-301 (1992). · Zbl 0703.57001 · doi:10.1007/BF03024004
[68] Smale, S. (1991). Dynamics retrospective: great problems, attempts that failed.Physica D 51, 267–273. · Zbl 0745.58018 · doi:10.1016/0167-2789(91)90238-5
[69] Taubes, G. (July 1987). What happens when Hubris meets Nemesis?Discover.
[70] Temam, R. (1979).Navier-Stokes Equations, revised edition, North- Holland, Amsterdam. · Zbl 0426.35003
[71] Traub, J. and Wozniakowski, H. (1982). Complexity of linear programming.Oper. Res. Letts. 1, 59–62. · Zbl 0486.90060 · doi:10.1016/0167-6377(82)90047-5
[72] Tsuji, M. (1959).Potential Theory in Modern Function Theory, Maruzen Co., Ltd., Tokyo. · Zbl 0087.28401
[73] Wen, L. and Xia, Z. (1997). A simpler proof of the Cp1 connecting lemma. To appear.
[74] Williams, R. (1979). The structure of Lorenz attractors.Publ. IHES 50, 101–152. · Zbl 0484.58021
[75] Wintner, A. (1941).The Analytical Foundations of Celestial Mechanics. Princeton University Press, Princeton, NJ. · Zbl 0026.02302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.