zbMATH — the first resource for mathematics

Robin boundary value problems on arbitrary domains. (English) Zbl 0947.35072
The Robin boundary value problems for quasilinear divergent elliptic equations of the second order on domains with nonsmoothness boundaries are investigated. \(L_p\)-estimates for the weak solutions are obtained. The theory of Sobolev spaces on arbitrary domains developed by Maz’ja was used. These estimates and the Moser iteration technique are basic for the construction of the \(L_p\)-theory for Robin boundary value problems on arbitrary domains. The semigroup theory is applied for the investigation of the uniqueness of the corresponding parabolic problems.

35J65 Nonlinear boundary value problems for linear elliptic equations
35D10 Regularity of generalized solutions of PDE (MSC2000)
35B45 A priori estimates in context of PDEs
Full Text: DOI
[1] Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. · Zbl 0314.46030
[2] Wolfgang Arendt, Gaussian estimates and interpolation of the spectrum in \?^\?, Differential Integral Equations 7 (1994), no. 5-6, 1153 – 1168. · Zbl 0827.35081
[3] J. Thomas Beale, Scattering frequencies of reasonators, Comm. Pure Appl. Math. 26 (1973), 549 – 563. · Zbl 0254.35094 · doi:10.1002/cpa.3160260408 · doi.org
[4] Marie-Hélène Bossel, Membranes élastiquement liées inhomogènes ou sur une surface: une nouvelle extension du théorème isopérimétrique de Rayleigh-Faber-Krahn, Z. Angew. Math. Phys. 39 (1988), no. 5, 733 – 742 (French, with English summary). · Zbl 0672.73015 · doi:10.1007/BF00948733 · doi.org
[5] E. N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations, J. Differential Equations 74 (1988), no. 1, 120 – 156. · Zbl 0662.34025 · doi:10.1016/0022-0396(88)90021-6 · doi.org
[6] E. N. Dancer and D. Daners, A priori bounds for solutions and spectra of Robin boundary value problems, Tech. Report No. 94-33, University of Sydney, 1994.
[7] E. N. Dancer and D. Daners, Domain perturbation for elliptic equations subject to Robin boundary conditions, J. Differential Equations 138 (1997), no. 1, 86 – 132. · Zbl 0886.35063 · doi:10.1006/jdeq.1997.3256 · doi.org
[8] Daniel Daners, Heat kernel estimates for operators with boundary conditions, Math. Nachr., to appear. · Zbl 0973.35087
[9] Robert Dautray and Jacques-Louis Lions, Mathematical analysis and numerical methods for science and technology. Vol. 5, Springer-Verlag, Berlin, 1992. Evolution problems. I; With the collaboration of Michel Artola, Michel Cessenat and Hélène Lanchon; Translated from the French by Alan Craig. · Zbl 0755.35001
[10] E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1989. · Zbl 0699.35006
[11] Kenneth Falconer, Fractal geometry, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. · Zbl 0689.28003
[12] Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. · Zbl 0176.00801
[13] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. · Zbl 0562.35001
[14] P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. · Zbl 0695.35060
[15] M. A. Krasnosel\(^{\prime}\)skiĭ, On a theorem of M. Riesz, Soviet Math. Dokl. 1 (1960), 229 – 231.
[16] Peter D. Lax and Ralph S. Phillips, On the scattering frequencies of the Laplace operator for exterior domains, Comm. Pure Appl. Math. 25 (1972), 85 – 101. · Zbl 0226.35077 · doi:10.1002/cpa.3160250108 · doi.org
[17] Moshe Marcus and Victor J. Mizel, Every superposition operator mapping one Sobolev space into another is continuous, J. Funct. Anal. 33 (1979), no. 2, 217 – 229. · Zbl 0418.46024 · doi:10.1016/0022-1236(79)90113-7 · doi.org
[18] V. G. Maz’ja, Classes of regions and embedding theorems for function spaces, Soviet Math. Dokl. 1 (1960), 882-885. · Zbl 0114.31001
[19] -, Zur Theorie Sobolewscher Räume, Teubner-Texte zur Mathematik, Teubner, Leipzig, 1981.
[20] Vladimir G. Maz’ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova.
[21] W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander, and U. Schlotterbeck, One-parameter semigroups of positive operators, Lecture Notes in Mathematics, vol. 1184, Springer-Verlag, Berlin, 1986.
[22] Jindřich Nečas, Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Éditeurs, Paris; Academia, Éditeurs, Prague, 1967 (French). · Zbl 1225.35003
[23] L. E. Payne and H. F. Weinberger, Lower bounds for vibration frequencies of elastically supported membranes and plates, SIAM J. 5 (1957), 171-182. · Zbl 0083.19406
[24] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. · Zbl 0516.47023
[25] Derek W. Robinson, Elliptic operators and Lie groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications. · Zbl 0747.47030
[26] Helmut H. Schaefer, Banach lattices and positive operators, Springer-Verlag, New York-Heidelberg, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 215. · Zbl 0296.47023
[27] René P. Sperb, Untere und obere Schranken für den tiefsten Eigenwert der elastisch gestützten Membran, Z. Angew. Math. Phys. 23 (1972), 231 – 244 (German, with English summary). · Zbl 0246.73072 · doi:10.1007/BF01593087 · doi.org
[28] René P. Sperb, Maximum principles and their applications, Mathematics in Science and Engineering, vol. 157, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. · Zbl 0454.35001
[29] Neil S. Trudinger, Linear elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa (3) 27 (1973), 265 – 308. · Zbl 0279.35025
[30] N. Th. Varopoulos, L. Saloff-Coste, and T. Coulhon, Analysis and geometry on groups, Cambridge Tracts in Mathematics, vol. 100, Cambridge University Press, Cambridge, 1992. · Zbl 0813.22003
[31] William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. · Zbl 0692.46022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.