zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Strong convergence of approximants to fixed points of nonexpansive nonself-mappings in Banach spaces. (English) Zbl 0947.47049
Let $E$ be a reflexive Banach space with uniformly Gâteaux differentiable norm, $C$ a closed convex subset of $E$ and $T: C\to C$ be a nonexpansive mapping (or $T: C\to E$). In both cases the existence of fixed points is expressed in terms of strong convergence theorems.

47H10Fixed-point theorems for nonlinear operators on topological linear spaces
47H09Mappings defined by “shrinking” properties
Full Text: DOI
[1] Browder, F. E.: Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces. Archs. ratio. Mech. anal. 24, 82-90 (1967) · Zbl 0148.13601
[2] Halpern, B.: Fixed points of nonexpanding maps. Bull. am. Math. soc. 73, 957-961 (1967) · Zbl 0177.19101
[3] Singh, S. P.; Watson, B.: On approximating fixed points. Proc. symp. Pure math. 45, 393-395 (1986) · Zbl 0597.47035
[4] Marino, G.; Trombetta, G.: On approximating fixed points for nonexpansive maps. Indian J. Math. 34, 91-98 (1992) · Zbl 0793.47052
[5] Xu, H. K.; Yin, X. M.: Strong convergence theorems for nonexpansive nonself-mappings. Nonlinear analysis 24, 223-228 (1995) · Zbl 0826.47038
[6] Reich, S.: Product formula, nonlinear semigroups, and accretive operators. J. functional anal. 36, 147-168 (1980) · Zbl 0437.47048
[7] Reich, S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. math. Anal. appl. 75, 287-292 (1980) · Zbl 0437.47047
[8] Takahashi, W.; Ueda, Y.: On reich’s strong convergence theorems for resolvents of accretive operators. J. math. Anal. appl. 104, 546-553 (1984) · Zbl 0599.47084
[9] Kitahara, S.; Takahashi, W.: Image recovery by convex combinations of sunny nonexpansive retractions. Topol. methods nonlinear anal. 2, 333-342 (1993) · Zbl 0815.47068
[10] Takahashi, W.: Nonlinear functional analysis. (1988) · Zbl 0647.90052
[11] Day, M. M.: Normed linear spaces. (1973) · Zbl 0268.46013
[12] Diestel, J.: Geometry of Banach spaces-selected topics. Lecture notes in math. 485 (1975) · Zbl 0307.46009
[13] Kirk, W. A.: A fixed point theorem for mappings which do not increase distances. Amer. math. Monthly 72, 1004-1006 (1965) · Zbl 0141.32402