×

zbMATH — the first resource for mathematics

Existence of hydrodynamics for the totally asymmetric simple \(K\)-exclusion process. (English) Zbl 0947.60088
The totally asymmetric simple \(K\)-exclusion process studied in the paper evolves as follows: Particles take nearest-neighbor steps to the right on the lattice \(\mathbb Z\), under the constraint that each site contains at most \(K\) partic1es. It is proved that such processes satisfy hydrodynamic limits under Euler scaling, and that the 1imit of the empirical particle profile is the entropy solution of a scalar conservation law with a concave flux function. The proof mainly uses a coupling with a growth model on the two-dimensional lattice and requires, but does not use the knowledge of the invariant measures of the process, which is not known indeed. The author treats the site-disordered case. This is still new, even for the simple exclusion process. The tools developed in the paper are rather interesting and may have other applications.

MSC:
60K35 Interacting random processes; statistical mechanics type models; percolation theory
60K25 Queueing theory (aspects of probability theory)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] ALDOUS, D. and DIACONIS, P. 1995. Hammersley’s interacting particle process and longest increasing subsequences. Probab. Theory Related Fields 103 199 213. · Zbl 0836.60107 · doi:10.1007/BF01204214
[2] ANDJEL, E. 1982. Invariant measures for the zero range process. Ann. Probab. 10 525 547. · Zbl 0492.60096 · doi:10.1214/aop/1176993765
[3] BARDI, M. and EVANS, L. C. 1984. On Hopf’s formulas for solutions of Hamilton Jacobi equations. Nonlinear Anal. 8 1373 1381. · Zbl 0569.35011 · doi:10.1016/0362-546X(84)90020-8
[4] BENJAMINI, I., FERRARI, P. and LANDIM, C. 1996. Asymmetric conservative processes with random rates. Stochastic Process. Appl. 61 181 204. · Zbl 0849.60093 · doi:10.1016/0304-4149(95)00077-1
[5] COVERT, P. and REZAKHANLOU, F. 1997. Hydrodynamic limit for particle systems with nonconstant speed parameter. J. Statist. Phys. 88 383 426. · Zbl 0939.82032 · doi:10.1007/BF02508477
[6] COX, J. T., GANDOLFI, A., GRIFFIN, P.S. and KESTEN, H. 1993. Greedy lattice animals I: upper bounds. Ann. Appl. Probab. 3 1151 1169. · Zbl 0818.60039 · doi:10.1214/aoap/1177005277
[7] DE MASI, A. and PRESUTTI, E. 1991. Mathematical Methods for Hydrodynamic Limits. Lecture Notes in Math. 1501. Springer, Berlin. · Zbl 0754.60122 · doi:10.1007/BFb0086457
[8] DEMBO, A. and ZEITOUNI, O. 1993. Large Deviations Techniques and Applications. Jones and Bartlett. · Zbl 0793.60030
[9] DEUSCHEL, J.-D. and STROOCK, D. W. 1989. Large Deviations. Academic Press, New York. · Zbl 0675.60086 · doi:10.1214/aop/1176991495
[10] DURRETT, R. 1988. Lectures on Particle Systems and Percolation. Wadsworth and Brooks Cole, Belmont, CA. · Zbl 0659.60129
[11] DURRETT, R. 1991. Probability: Theory and Examples. Wadsworth and Brooks Cole, Belmont, CA. · Zbl 0709.60002
[12] EKHAUS, M. and GRAY, L. 1994. Convergence to equilibrium and a strong law for the motion of restricted interfaces. Unpublished manuscript.
[13] EVANS, L. C. 1984. Some min max methods for the Hamilton Jacobi equation. Indiana Univ. Math. J. 33 31 50. · Zbl 0543.35012 · doi:10.1512/iumj.1984.33.33002
[14] FERRARI, P. A. 1994. Shocks in one-dimensional processes with drift. In Probability and PhaseTransitions G. Grimmett, ed. 35 48. Kluwer, Dordrecht. Z. · Zbl 0827.60082
[15] FERRARI, P. A. 1996. Limit theorems for tagged particles. Markov Process. Related Fields 2 17 40. · Zbl 0879.60109
[16] GLYNN, P. W. and WHITT, W. 1991. Departures from many queues in a series. Ann. Appl. Probab. 1 546 572. · Zbl 0749.60090 · doi:10.1214/aoap/1177005838
[17] GOLDSTEIN, S. and SPEER, E. R. 1998. Reflection invariance of the current in the totally asymmetric simple exclusion process with disorder.
[18] GRIFFEATH, D. 1979. Additive and Cancellative Interacting Particle Systems. Lecture Notes in Math. 724. Springer, Berlin. · Zbl 0412.60095 · doi:10.1007/BFb0067306
[19] GRIMMETT, G. and KESTEN, H. 1984. First-passage percolation, network flows and electrical resistances.Wahrsch. Verw. Gebiete 66 335 366. Z. · Zbl 0525.60098 · doi:10.1007/BF00533701
[20] HOPF, E. 1965. Generalized solutions of nonlinear equations of first order. J. Math. Mech. 14 951 973. · Zbl 0168.35101
[21] KELLY, F. 1979. Reversibility and Stochastic Networks. Wiley, New York. · Zbl 0422.60001
[22] KINGMAN, J. F. C. 1968. The ergodic theory of subadditive stochastic processes. J. Roy. Statist. Soc. Ser. B 30 499 510. JSTOR: · Zbl 0182.22802 · links.jstor.org
[23] KIPNIS, C., LANDIM, C. and OLLA, S. 1994. Hydrodynamic limit for a nongradient system: the generalized symmetric exclusion process. Comm. Pure Appl. Math. 47 1475 1545. · Zbl 0814.76003 · doi:10.1002/cpa.3160471104
[24] KRUG, J. and SPOHN, H. 1991. Kinetic roughening of growing surfaces. In Solids Far fromEquilibrium C. Godreche, ed. 479 582. Cambridge Univ. Press. Z.
[25] LANDIM, C. 1996. Hydrodynamical limit for space inhomogeneous one-dimensional totally asymmetric zero-range processes. Ann. Probab. 24 599 638. · Zbl 0862.60095 · doi:10.1214/aop/1039639356
[26] LAX, P. 1957. Hyperbolic systems of conservation laws II. Comm. Pure Appl. Math. 10 537 566. · Zbl 0081.08803 · doi:10.1002/cpa.3160100406
[27] LIGGETT, T. M. 1985. Interacting Particle Systems. Springer, New York. · Zbl 0559.60078
[28] LIONS, P. L. 1982. Generalized Solutions of Hamilton Jacobi Equations, Pitman, London. · Zbl 0497.35001
[29] LIONS, P. L., SOUGANIDIS, P. E. and VASQUEZ, J. L. 1987. The relation between the porous ḿedium and the eikonal equations in several space dimensions. Rev. Mat. Iberoamericana 3 275 310.d REZAKHANLOU, F. 1991. Hydrodynamic limit for attractive particle systems onComm. Math. Phys. 140 417 448. · Zbl 0738.60098 · doi:10.1007/BF02099130
[30] ROCKAFELLAR, R. T. 1970. Convex Analysis. Princeton Univ. Press. · Zbl 0193.18401
[31] ROST, H. 1981. Non-equilibrium behaviour of a many particle process: density profile and local equilibrium.Wahrsch. Verw. Gebiete 58 41 53. Z. · Zbl 0451.60097 · doi:10.1007/BF00536194
[32] SEPPALAINEN, T. 1996. A microscopic model for the Burgers equation and longest increasing \" \" subsequences. Electron. J. Probab. 1 Paper 5 1 51. · Zbl 0891.60093 · emis:journals/EJP-ECP/EjpVol1/paper5.abs.html · eudml:119503
[33] SEPPALAINEN, T. 1997a. A scaling limit for queues in series. Ann. Appl. Probab. 7 855 872. \" \" · Zbl 0897.60094 · doi:10.1214/aoap/1043862414
[34] SEPPALAINEN, T. 1997b. Increasing sequences of independent points on the planar lattice. Ann. \" Äppl. Probab. 7 886 898. · Zbl 0897.60095 · doi:10.1214/aoap/1043862416
[35] SEPPALAINEN, T. 1998a. Exact limiting shape for a simplified model of first-passage percolation \" ön the plane. Ann. Probab. 26 1232 1250. · Zbl 0935.60093 · doi:10.1214/aop/1022855751
[36] SEPPALAINEN, T. 1998b. Large deviations for increasing sequences on the plane. Probab. Theory \" \" Related Fields. 112 221 244.
[37] SEPPALAINEN, T. 1998c. Coupling the totally asymmetric simple exclusion process with a \" \" moving interface. Markov Process. Related Fields 112 221 244.
[38] SEPPALAINEN, T. and KRUG, J. 1998. Hydrodynamics and platoon formation for a totally \" äsymmetric exclusion model with particlewise disorder. J. Statist. Phys.
[39] SPOHN, H. 1991. Large Scale Dynamics of Interacting Particles. Springer, Berlin. · Zbl 0742.76002
[40] VARADHAN, S. R. S. 1984. Large Deviations and Applications. SIAM, Philadelphia. · Zbl 0549.60023
[41] VARADHAN, S. R. S. 1993. Nonlinear diffusion limit for a system with nearest neighbor interactions II. In Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on Fractals K. Elworthy and N. Ikeda, eds. 75 128. Longman, New York. · Zbl 0793.60105
[42] AMES, IOWA 50011 E-MAIL: seppalai@iastate.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.