×

zbMATH — the first resource for mathematics

Real spectra in non-Hermitian Hamiltonians having \(\mathcal{PT}\) symmetry. (English) Zbl 0947.81018
Summary: The condition of self-adjointness ensures that the eigenvalues of a Hamiltonian are real and bounded below. Replacing this condition by the weaker condition \(\mathcal P\mathcal T\) of symmetry, one obtains new infinite classes of complex Hamiltonians whose spectra are also real and positive. These \(\mathcal P\mathcal T\) symmetric theories may be viewed as analytic continuations of conventional theories from real to complex phase space. This paper describes the unusual classical and quantum properties of these theories.

MSC:
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] N. Hatano, Phys. Rev. Lett. 77 pp 570– (1996) · doi:10.1103/PhysRevLett.77.570
[2] N. Hatano, Phys. Rev. B 56 pp 8651– (1997) · doi:10.1103/PhysRevB.56.8651
[3] R. F. Streater, in: PCT, Spin & Statistics, and all that (1964) · Zbl 0135.44305 · doi:10.1515/9781400884230
[4] C. M. Bender, Phys. Rev. D 55 pp R3255– (1997) · doi:10.1103/PhysRevD.55.R3255
[5] C. M. Bender, Phys. Rev. D 57 pp 3595– (1998) · doi:10.1103/PhysRevD.57.3595
[6] I. Herbst, Commun. Math. Phys. 64 pp 279– (1979) · Zbl 0447.47028 · doi:10.1007/BF01221735
[7] C. M. Bender, Phys. Lett. A 173 pp 442– (1993) · doi:10.1016/0375-9601(93)90153-Q
[8] C. M. Bender, in: Advanced Mathematical Methods for Scientists and Engineers (1978) · Zbl 0417.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.