[1] |
Adames, R. A.: Sobolev space. (1975) |

[2] |
Bouchut, F.: On zero-pressure gas dynamics. Series on advances in mathematics for applied sciences 22 (1994) · Zbl 0863.76068 |

[3] |
Courant, R.; Friedrichs, K. O.: Supersonic flow and shock waves. (1948) · Zbl 0041.11302 |

[4] |
Chen, G. Q.; Frid, H.: Existence and asymptotic behavior of measure-valued solutions for degenerate conservation laws. J. differential equations 127, 197-224 (1996) · Zbl 0854.35066 |

[5] |
Chang, T.; Hsiao, L.: The Riemann problem and interaction of waves in gas dynamics. (1989) · Zbl 0698.76078 |

[6] |
Dafermos, C. M.: Solution of the Riemann problem for a class of hyperbolic systems of conservation laws by viscosity method. Arch. rational mech. Anal. 52, 1-9 (1973) · Zbl 0262.35034 |

[7] |
Weinan, E.; Rykov, Yu.G.; Sinai, Ya.G.: Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Comm. math. Phys. 177, 349-380 (1996) · Zbl 0852.35097 |

[8] |
Forester, A.; Le Floch, P.: Multivalued solutions to some nonlinear and nonstrictly hyperbolic systems. Japan J. Indust. appl. Math. 9, 1-23 (1992) · Zbl 0768.35058 |

[9] |
Gelfand, I.: Some problem in the theory of quasilinear equations. Uspekhi mat. Nauk 14, 87-158 (1959) |

[10] |
Hopf, E.: The partial differential equation $ut+uux={\mu}$uxx. Comm. pure appl. Math. 3, 201-230 (1950) · Zbl 0039.10403 |

[11] |
Joseph, K. T.: A Riemann problem whose viscosity solutions contain delta-measures. Asymptotic anal. 7, 105-120 (1993) · Zbl 0791.35077 |

[12] |
Korchinski, D. J.: Solutions of a Riemann problem for a $2{\times}2$ system of conservation laws possessing classical solutions. (1977) |

[13] |
Lax, P. D.: Hyperbolic systems of conservation laws and the mathematical theory of shock waves. (1973) · Zbl 0268.35062 |

[14] |
Le Floch, P.: An existence and uniqueness result for two nonstrictly hyperbolic systems. IMA math. Appl. 27 (1990) · Zbl 0727.35083 |

[15] |
Liu, T. P.: Nonlinear stability of shock waves for viscous conservation laws. Mem. amer. Math. soc. 328 (1986) |

[16] |
Li, J.; Zhang, T.: Generalized rankine--hugoniot relations of delta-shocks in solutions of transportation equations. Nonlinear PDE and related areas, 219-232 (1998) · Zbl 0929.35092 |

[17] |
Smoller, J.: Shock waves and reaction-diffusion equations. (1992) · Zbl 0508.35002 |

[18] |
Schaeffer, D.; Shearer, M.: Riemann problems for nonstrictly hyperbolic $2{\times}2$ systems of conservation laws. Trans. amer. Math. soc. 304, 267-306 (1987) · Zbl 0656.35081 |

[19] |
Sheng, W.; Zhang, T.: The Riemann problem for transportation equations in gas dynamics. Mem. amer. Math. soc. 137 (1999) · Zbl 0913.35082 |

[20] |
Tan, D.; Zhang, T.: Two-dimensional Riemann problem for a hyperbolic system of nonlinear conservation laws. I. four-J cases. J. differential equations 111, 203-254 (1994) · Zbl 0803.35085 |

[21] |
Tan, D.; Zhang, T.; Zheng, Y.: Delta-shock waves as limits of vanishing viscosity for hyperbolic system of conservation laws. J. differential equations 112, 1-32 (1994) · Zbl 0804.35077 |

[22] |
A. I. Volâ€™pert, and, S. I. Hudjaev, Analysis in classes of discontinuous functions and equations of mathematical physics, 1985. |

[23] |
H. Yang, and, J. Li, Delta-shocks as limits of vanishing viscosity for multidimensional zero-pressure gas dynamics, Quarterly Appl. Math, in press. · Zbl 1019.76040 |

[24] |
Y. Zheng, Systems of conservation laws with incomplete sets of eigenvectors everywhere, preprint, 1997. |

[25] |
Zhang, T.; Zheng, Y.: Conjecture on the structure of solution of the Riemann problem of two-dimensional gas dynamics systems. SIAM J. Math. anal. 21, 593-625 (1990) · Zbl 0726.35081 |