zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A monolithical fluid-structure interaction algorithm applied to the piston problem. (English) Zbl 0948.76046
Author’s summary: We present an investigation of time-marching computational fluid-structure interaction algorithms. The analysis is applied to the piston problem, where attention is focussed on the time integration of coupling algorithms. The staggered scheme is first investigated, where fluid and structure are alternately integrated by separate solvers in a predictor-corrector fashion. This algorithm suffers from a time lag between the integration of the fluid and structure. The influence of the time lag is investigated by the comparison of different predictions for the structure. Then we introduce a novel monolithical algorithm in order to annihilate the time lag. This algorithm integrates fluid, structure and interaction as a single system by an implicit algorithm. Numerical results are obtained for linear acoustic as well as nonlinear Euler equations of gas dynamics.

76M12Finite volume methods (fluid mechanics)
76N15Gas dynamics, general
74F10Fluid-solid interactions
Full Text: DOI
[1] Bendiksen, O. O.: Fluid-structure coupling requirements for time accurate aeroelastic simulations. 4th int. Symp. on fluid-structure interaction, aeroelasticity, flow-induced vibrations and noise 53-3 (1997)
[2] Park, K. C.; Felippa, C. A.; Deruntz, J. A.: Stabilisation of staggered solution procedures for fluid-structure interaction analysis. Comput. methods fluid-structure interaction problems, AMD 26 (1977) · Zbl 0389.76002
[3] Prananta, B. B.; Hounjet, M. H. L.; Zwaan, R. J.: Thin layer Navier Stokes solver and its application for aeroelastic analysis of an airfoil in transonic flow. International forum on aeroelasticity and structural dynamics (1995)
[4] Prananta, B. B.; Hounjet, M. H. L.: Aeroelastic simulation with advanced CFD methods in 2D and 3D transonic flow. Proc. unsteady aerodynamics conference royal aeronautical society (1996)
[5] Mouro, J.: Interactions fluide structure en frands déplacements, résolution numérique et application aux composants hydrauliques automobiles. Ph.d. thesis (1996)
[6] Piperno, S.: Staggered time-integration methods for a one-dimensional Euler aeroelastic problem. Rapport de recherche CERMICS 94-33 (1994)
[7] Piperno, S.: Simulation numérique de phénomènes d’interaction fluide-structure. Ph.d. thesis (1995)
[8] Blom, F. J.; Leyland, P.: Analysis of fluid-structure interaction on moving airfoils by means of an improved ALE-method. AIAA paper 97-1770 (1997)
[9] Blom, F. J.; Leyland, P.: Analysis of fluid-structure interaction by means of dynamic unstructured meshes. 4th int. Symp. on fluid-structure interaction, aeroelasticity, flow-induced vibrations and noise 53-1, 3-10 (1997)
[10] Piperno, S.; Farhat, C.; Larrouturou, B.: Partitioned procedures for the transient solution of coupled aeroelastic problems. Part I: Model problem, theory and two-dimensional application. Comput. methods appl. Mech. engrg. 124, 79-112 (1995) · Zbl 1067.74521
[11] Farhat, C.; Maman, N.; Lesoinne, M.: Mixed explicit/implicit time integration of coupled aeroelastic problems: three-field formulation, geometric conservation law and distributed solution. (1994) · Zbl 0865.76038
[12] Prananta, B. B.; Hounjet, M. H. L.: Large time step aero-structural coupling procedures for aeroelastic simulation. Proc. 1997 international forum on aeroelasticity and structural dynamics, 63-70 (1997)
[13] Giles, M. B.: Stability and accuracy of numerical boundary conditions in aeroelastic analysis. Int. J. Numer. methods fluids 24, 739-757 (1997) · Zbl 0878.73076
[14] Giles, M. B.: Stability analysis of numerical interface conditions in fluid-structure thermal analysis. Int. J. Numer. methods fluids 25, 421-436 (1997) · Zbl 0891.76058
[15] Bendiksen, O. O.: A new approach to computational aeroelasticity. AIAA paper 91-0939-CP (1991)
[16] He, L.: Integration of 2-D fluid/structure coupled system for calculations of turbomachinery aerodynamic/aeroelastic instabilities. Int. journal comput. Fluid dyn. 3, 217-231 (1994)
[17] Alonso, J. J.; Jameson, A.: Fully-implicit time-marching aeroelastic solutions. AIAA paper 94-0056 (1994)
[18] Melville, R. B.; Morton, S. A.; Rizzetta, D. P.: Implementation of a fully-implicit aeroelastic Navier-Stokes solver. AIAA paper 97-2039 (1997)
[19] Morton, S. A.; Melville, R. B.; Visbal, M. R.: Accuracy and coupling issues of aeroelastic Navier-Stokes solutions on deforming meshes. AIAA paper 97-1085 (1997)
[20] Hirsch, C.: Numerical computation of internal and external flows. 2 (1990) · Zbl 0742.76001
[21] Hirsch, C.: Numerical computation of internal and external flows. 1 (1988) · Zbl 0662.76001
[22] Donea, J.; Giuliani, S.; Halleux, J. P.: An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput. methods appl. Mech. engrg. 33, 689-723 (1982) · Zbl 0508.73063
[23] Batina, J. T.: Implicit flux-split Euler schemes for unsteady aerodynamic analysis involving unstructured dynamic meshes. Aiaa j. 29, No. 11, 1836-1843 (1991) · Zbl 0737.76049
[24] Bathe, K. J.; Wilson, E. L.: Numerical methods in finite element analysis. (1976) · Zbl 0387.65069
[25] Farhat, C.: High performance simulation of coupled nonlinear transient aeroelastic problems. (1995)
[26] Piperno, S.: Two-dimensional Euler aeroelastic simulations with interface matching relaxation. Proc. second ECCOMAS conference on numer. Methods in engineering, 898-904 (1996)
[27] Rausch, R. D.; Batina, J. T.; Yang, H. T. Y.: Euler flutter analysis of airfoils using unstructured dynamic meshes. AIAA paper 89-1384-CP (1989)
[28] Farhat, C.; Lin, T. Y.: A structure attached corotational fluid grid for transient aeroelastic computations. Aiaa j. 31, No. 3, 597-599 (1993) · Zbl 0819.73072
[29] Felker, F. F.: A new method for transonic static aeroelasticity problems. AIAA paper 92-2123-CP (1992)
[30] Felker, F. F.: Direct solution of two-dimensional Navier-Stokes equations for static aeroelasticity problems. Aiaa j. 31, No. 1, 148-153 (1993) · Zbl 0776.73049
[31] Thomas, P. D.; Lombard, C. K.: Geometric conservation law and its application to flow computations on moving grids. Aiaa j. 17, No. 10, 1030-1037 (1979) · Zbl 0436.76025
[32] Lesoinne, M.; Farhat, C.: Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations. Comput. methods appl. Mech. engrg. 134, 71-90 (1996) · Zbl 0896.76044
[33] Van Leer, B.: Flux-vector splitting for the Euler equations. 8th international conference on numerical methods in fluid dynamics (1982)