Hannachi, Messaoud Asymptotic geometry of algebraic curves. (Géométrie asymptotique des courbes algébriques.) (French) Zbl 0949.03064 Ann. Math. Blaise Pascal 6, No. 2, 21-28 (1999). The purpose of this paper is to apply nonstandard analysis to the study of infinite branches of algebraic curves. If an unlimited point \(M\) of an algebraic curve \(C\) is \(\omega\vec V_1+\omega\vec V_2\), then \(C\) has an asymptotic of direction \(\vec V_1\Leftrightarrow\omega e\) is limited. We can learn the intention from the author’s analysis of the example \(x^3-x^2y+ y^2=0\) by some intuitive properties of infinitesimals. Reviewer: K.Iséki (Osaka) MSC: 03H05 Nonstandard models in mathematics 14H20 Singularities of curves, local rings Keywords:halo; nonstandard analysis; infinite branches of algebraic curves; unlimited point PDF BibTeX XML Cite \textit{M. Hannachi}, Ann. Math. Blaise Pascal 6, No. 2, 21--28 (1999; Zbl 0949.03064) Full Text: DOI Numdam EuDML OpenURL References: [1] Diener, F. et Reeb, G., Cours d’analyse non standard, Hermann, Paris1989. · Zbl 0682.26010 [2] Goze, M., Etude locale des courbes algébriques, IRMAStrasbourg1982. · Zbl 0534.14015 [3] Goze, M. et Lutz, R., Non standard analysis: A practical guide with applications, Lecture Notes in Maths., Springer-Verlag88 (1981). · Zbl 0506.03021 [4] Hannachi, M., Invariants métriques associés aux points singuliers d’une courbe réelle, IRMA, Strasbourg, (1985). [5] Hannachi, M., Courbure généralisée ou finesse des courbes planes , Actes de l’école d’été OPU (Alger)CNRS (Paris) 1987, 181-185. [6] Hannachi, M., Invariants métriques associés à une courbe réelle, Magrhreb Mathematica Rewiew, Vol.1 N°2 (1992), 161-166. [7] Hannachi, M., Invariants métriques associés à une courbe réelle dans IRn, Magrhreb Mathematica Rewiew, Vol.3 N°1 (1994), 65-68. [8] Hannachi, M., Invariants métriques associés aux points singuliers, à distance finie ou infinie, d’une courbe réelle , Thèse de doctorat d’état, Sétif1996. [9] Lelong-Ferrand, J. et Arnaudies, J.M., Cours de mathématiques (tome3), Dunod Université, Paris1977. · Zbl 0361.53001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.