×

zbMATH — the first resource for mathematics

Two-fold theorem on Fréchetness of products. (English) Zbl 0949.54010
Summary: A refined common generalization of known theorems (Arkhangel’skij, Michael, Popov and Ranchin) on the Fréchetness of products is proved. A new characterization, in terms of products, of strongly Fréchet topologies is provided.

MSC:
54B10 Product spaces in general topology
54D55 Sequential spaces
54D50 \(k\)-spaces
54A20 Convergence in general topology (sequences, filters, limits, convergence spaces, nets, etc.)
54G15 Pathological topological spaces
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] A. V. Arhangel’skii: The frequency spectrum of a topological space and the product operation. Trans. Moscow Math. Soc. (1981), 164-200.
[2] S. Dolecki and S. Sitou: Precise bounds for sequential order of products of some Fréchet topologies. Topology Appl. · Zbl 0921.54020 · doi:10.1016/S0166-8641(97)00083-7
[3] E. K. van Douwen: The product of a Fréchet space and a metrizable space. Topology Appl. 47 (1992), 163-164. · Zbl 0759.54013 · doi:10.1016/0166-8641(92)90026-V
[4] R. Engelking: General Topology. PWN Warszawa (1977). · Zbl 0373.54002
[5] E. Michael: A quintuple quotient quest. General Topology Appl. 2 (1972), 91-138. · Zbl 0238.54009 · doi:10.1016/0016-660X(72)90040-2
[6] E. Michael: A note on closed maps and compact sets. Israel J. Math. 2 (1964), 174-176. · Zbl 0136.19303 · doi:10.1007/BF02759940
[7] T. Nogura: Fréchetness of inverse limits and products. Topology and Appl. 20 (1985), 59-66. · Zbl 0605.54019 · doi:10.1016/0166-8641(85)90035-5
[8] T. Nogura: The product of \(\langle \alpha _i\rangle \)-spaces. Topology and Appl. 21 (1985), 251-259. · Zbl 0574.54005
[9] J. Novák: On convergence group. Czechoslovak Math. J. 20 (1970), 357-374. · Zbl 0217.08504 · eudml:12542
[10] P. Nyikos: The Cantor tree and the Fréchet-Urysohn property. Annals N.Y. Acad. Sc. 552 (1989), 109-123. · Zbl 0894.54021 · doi:10.1111/j.1749-6632.1989.tb22391.x
[11] P. Nyikos: Subsets of \(^\omega \omega \) and the Fréchet-Urysohn and \(\alpha _i\)-properties. Topology Appl. 48 (1992), 91-116. · Zbl 0774.54019 · doi:10.1016/0166-8641(92)90021-Q
[12] V. V Popov and D. V. Rančin: On certain strengthening of the property of Fréchet-Urysohn. Vest. Moscow Univ. 2 (1978), 75-80. · Zbl 0391.54016
[13] Y. Tanaka: Products of sequential spaces. Proc. Amer. Math. Soc. 54 (1976), 371-375. · Zbl 0292.54025 · doi:10.2307/2040820
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.