×

Adaptive covariance estimation of locally stationary processes. (English) Zbl 0949.62082

Let \(X(t)\) be a real-valued zero-mean process with covariance \(R(t,s)= EX(t)X(s)\). The covariance operator is defined for any \(f\in L^2(R)\) by \[ Tf(t)= \int^\infty_{-\infty} R(t,s)f(s)ds. \] It is shown that the covariance operator of a locally stationary process has approximate eigenvectors that are local cosine functions. The problem of estimation of covariance operators with a “best” basis search is treated. Fast numerical algorithms and their application to examples of locally stationary processes are described.

MSC:

62M15 Inference from stochastic processes and spectral analysis
60G15 Gaussian processes
60G12 General second-order stochastic processes
Full Text: DOI

References:

[1] Adak, S. (1995). Time-dependent spectral analysis of nonstationary time series. Technical report, Dept. Statistics, Stanford Univ. · Zbl 1064.62565
[2] Asch, M., Kohler, W., Papanicolaou, G., Postel, M. and White, B. (1991). Frequency content of randomly scattered signals. SIAM Rev. 33 519-625. JSTOR: · Zbl 0736.60055 · doi:10.1137/1033136
[3] Benassi, A., Jaffard, S. and Roux, D. (1994). Elliptic Gaussian random processes. · Zbl 0880.60053 · doi:10.4171/RMI/217
[4] Coifman, R. and Meyer, Y. (1991). Remarques sur l’analyse de Fourier a fen etre. C.R. Acad. Sci. Paris Sér. I 259-261. · Zbl 0748.42012
[5] Coifman, R. and Wickerhauser, V. (1992). Entropy-based algorithms for best basis selection. IEEE Trans. Inform. Theory 38 713-718. · Zbl 0849.94005 · doi:10.1109/18.119732
[6] Dahlhaus, R. (1997). Fitting time series models to nonstationary processes. Ann. Statist. 25 1-37. · Zbl 0871.62080 · doi:10.1214/aos/1034276620
[7] Donoho, D., Mallat, S. and von Sachs, R. (1996). Estimating covariances of locally stationary processes: consistency of best basis methods. In Proceedings of IEEE Time Frequence and Time-Scale Sy mposium, Paris, July 1996. IEEE, New York.
[8] Malvar, H. S. (1989). The LOT: transform coding without block effects. IEEE Trans. Acoust. Speech Signal Process. 37 553-559.
[9] Martin, W. and Flandrin, P. (1985). Wigner-Ville spectral analysis of non-stationary processes. IEEE Trans. Acoust. Speech Signal Process. 33 1461-1470.
[10] Meyer, Y. (1993). Wavelets and operators. Proceedings of Sy mposia in Applied Mathematics 47 35-57. · Zbl 0810.42015
[11] Meyer, Y. (1993). Wavelets-algorithms and applications. SIAM. · Zbl 0821.42018
[12] Neumann, M. and von Sachs, R. (1997). Wavelet thresholding in anisotropic function classes and application to adaptive estimation of evolutionary spectra. Ann. Statist. 25 38-76. · Zbl 0871.62081 · doi:10.1214/aos/1034276621
[13] Papanicolaou, G. and Weinry b, S. (1994). A functional limit theorem for waves reflected by a random medium. Appl. Math. Optim. 30 307-334. · Zbl 0813.60055 · doi:10.1007/BF01183015
[14] Priestley, M. B. (1965). Design relations for non-stationary processes. J. Roy. Statist. Soc. Ser. B 28 228-240. JSTOR: · Zbl 0237.62058
[15] Priestley, M. B. (1965). Evolutionary spectra and non-stationary processes. J. Roy. Statist. Soc. Ser. B 27 204-237. JSTOR: · Zbl 0144.41001
[16] Priestley, M. B. (1995). Wavelets and time-dependent spectral analysis. Technical Report 311, Dept. Statistics, Stanford Univ. · Zbl 0835.62084 · doi:10.1111/j.1467-9892.1996.tb00266.x
[17] Riedel, K. S. (1993). Optimal data-based kernel estimation of evolutionary spectra. IEEE Trans. Signal Proc. 41 2439-2447. · Zbl 0825.93736 · doi:10.1109/78.224252
[18] Say eed, A. M. and Jones, D. L. (1995). Optimal kernels for nonstationary spectral estimation. IEEE Transactions on Signal Processing 43 478-491.
[19] von Sachs, R. and Schneider, K. (1993). Wavelet smoothing of evolutionary spectra by nonlinear thresholding. Journal of Appl. and Comput. Harmonic Analy sis 268-282. · Zbl 0860.62069 · doi:10.1006/acha.1996.0021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.