×

Constrained model predictive control: Stability and optimality. (English) Zbl 0949.93003

Automatica 36, No. 6, 789-814 (2000); correction ibid. 37, 483 (2001).
Summary: Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon open-loop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and the first control in this sequence is applied to the plant. An important advantage of this type of control is its ability to cope with hard constraints on controls and states. It has, therefore, been widely applied in petro-chemical and related industries where satisfaction of constraints is particularly important because efficiency demands operating points on or close to the boundary of the set of admissible states and controls. In this review, we focus on model predictive control of constrained systems, both linear and nonlinear and discuss only briefly model predictive control of unconstrained nonlinear and/or time-varying systems. We concentrate our attention on research dealing with stability and optimality; in these areas the subject has developed, in our opinion, to a stage where it has achieved sufficient maturity to warrant the active interest of researchers in nonlinear control. We distill from an extensive literature essential principles that ensure stability and use these to present a concise characterization of most of the model predictive controllers that have been proposed in the literature. In some cases the finite horizon optimal control problem solved on-line is exactly equivalent to the same problem with an infinite horizon; in other cases it is equivalent to a modified infinite horizon optimal control problem. In both situations, known advantages of infinite horizon optimal control accrue.

MSC:

93-02 Research exposition (monographs, survey articles) pertaining to systems and control theory
93B51 Design techniques (robust design, computer-aided design, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alamir, M.; Bornard, G., Stability of a truncated infinite constrained receding horizon schemeThe general discrete nonlinear case, Automatica, 31, 9, 1353-1356 (1995) · Zbl 0831.93055
[5] Badgwell, T. A., Robust model predictive control of stable linear systems, International Journal of Control, 68, 4, 797-818 (1997) · Zbl 0889.93025
[7] Bemporad, A., A predictive controller with artificial Lyapunov function for linear systems with input/state constraints, Automatica, 34, 10, 1255-1260 (1998) · Zbl 0938.93524
[8] Bemporad, A., Reference governor for constrained nonlinear systems, IEEE Transactions on Automatic Control, 43, 3, 415-419 (1998) · Zbl 0906.93024
[9] Bemporad, A.; Casavola, A.; Mosca, E., Nonlinear control of constrained linear systems via predictive reference management, IEEE Transactions on Automatic Control, 42, 3, 340-349 (1997) · Zbl 0873.93034
[10] Bemporad, A.; Chisci, L.; Mosca, E., On the stabilizing property of SIORHC, Automatica, 30, 2013-2015 (1995) · Zbl 0825.93418
[12] Bemporad, A.; Morari, M., Control of systems integrating logic, dynamics, and constraints, Automatica, 35, 407-427 (1999) · Zbl 1049.93514
[13] Bemporad, A.; Mosca, E., Fulfilling hard constraints in uncertain linear systems by reference managing, Automatica, 34, 3, 451-461 (1998) · Zbl 0949.93025
[14] Biegler, L. T., Advances in nonlinear programming concepts for process control, Journal of Process Control, 8, 5-6, 301 (1998)
[17] Chen, C. C.; Shaw, L., On receding horizon feedback control, Automatica, 18, 349-352 (1982) · Zbl 0479.93031
[19] Chen, H.; Allgöwer, F., A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability, Automatica, 14, 10, 1205-1217 (1998) · Zbl 0947.93013
[21] Chisci, L.; Lombardi, A.; Mosca, E., Dual receding horizon control of constrained discrete-time systems, European Journal of Control, 2, 278-285 (1996) · Zbl 0867.93031
[22] Chisci, L.; Mosca, E., Stabilizing I-O receding horizon control of CARMA plants, IEEE Transactions on Automatic Control, 39, 3, 614-618 (1994) · Zbl 0814.93058
[23] Chmielewski, D.; Manousiouthakis, V., On constrained infinite-time linear quadratic optimal control, Systems & Control Letters, 29, 121-129 (1996) · Zbl 0867.49025
[25] Clarke, D. W.; Mohtadi, C.; Tuffs, P. S., Generalized predictive control. Part 1: The basic algorithms, Automatica, 23, 2, 137-148 (1987) · Zbl 0621.93032
[26] Clarke, D. W.; Mohtadi, C.; Tuffs, P. S., Generalized predictive control. Part 2: Extensions and interpretations, Automatica, 23, 2, 149-160 (1987) · Zbl 0621.93033
[27] Clarke, D. W.; Scattolini, R., Constrained receding horizon predictive control, Proceedings of the IEE, Part D, Control theory and applications, 138, 347-354 (1991) · Zbl 0743.93063
[31] De Nicolao, G.; Magni, L.; Scattolini, R., On the robustness of receding horizon control with terminal constraints, IEEE Transactions on Automatic Control, 41, 451-453 (1996) · Zbl 0850.93473
[32] De Nicolao, G.; Magni, L.; Scattolini, R., Robust predictive control of systems with uncertain impulse response, Automatica, 32, 10, 1475-1479 (1996) · Zbl 0875.93123
[37] De Oliveira, N. M.C.; Biegler, L. T., Constraint handling and stability properties of model-predictive control, A.I.Ch.E. Journal, 40, 7, 1138-1155 (1994)
[41] Garcı́a, C. E.; Morshedi, A. M., Quadratic programming solution of dynamic matrix control (QDMC), Chemical Engineering Communications, 46, 73-87 (1986)
[42] Garcı́a, C. E.; Prett, D. M.; Morari, M., Model predictive controltheory and practice — a survey, Automatica, 25, 3, 335-348 (1989) · Zbl 0685.93029
[43] Gauthier, J. P.; Bornard, G., Commande multivariable en présence de constraintes de type inégalité, Revue d’Automatique d’Informatique et de Recherche Opérationnelle (RAIRO), 17, 3, 205-222 (1983) · Zbl 0518.93038
[44] Genceli, H.; Nikolaou, M., Robust stability analysis of constrained \(l_1\) norm model predictive control, A.I.Ch.E. Journal, 39, 12, 1954-1965 (1993)
[46] Gilbert, E. G.; Tan, K. T., Linear systems with state and control constraintsthe theory and application of maximal output admissible sets, IEEE Transactions on Automatic Control, AC-36, 1008-1020 (1991) · Zbl 0754.93030
[48] Kalman, R. E., Contributions to the theory of optimal control, Boletin Sociedad Matematica Mexicana, 5, 102-119 (1960) · Zbl 0112.06303
[51] Keerthi, S. S.; Gilbert, E. G., Optimal, infinite horizon feedback laws for a general class of constrained discrete time systemsStability and moving-horizon approximations, Journal of Optimization Theory and Application, 57, 265-293 (1988) · Zbl 0622.93044
[52] Kleinman, B. L., An easy way to stabilize a linear constant system, IEEE Transactions on Automatic Control, 15, 12, 693 (1970)
[53] Kothare, M. V.; Balakrishnan, V.; Morari, M., Robust constrained model predictive control using linear matrix inequalities, Automatica, 32, 10, 1361-1379 (1996) · Zbl 0897.93023
[54] Kurtz, M. J.; Henson, M. A., Input-output linearizing control of constrained nonlinear processes, Journal of Process Control, 7, 1, 3-17 (1997)
[55] Kwon, W. H.; Bruckstein, A. M.; Kailath, T., Stabilizing state-feedback design via the moving horizon method, International Journal of Control, 37, 3, 631-643 (1983) · Zbl 0504.93051
[56] Kwon, W. H.; Pearson, A. E., A modified quadratic cost problem and feedback stabilization of a linear system, IEEE Transactions on Automatic Control, 22, 5, 838-842 (1977) · Zbl 0372.93037
[60] Lee, J. H.; Morari, M.; Garcı́a, C. E., State-space interpretation of model predictive control, Automatica, 30, 4, 707-717 (1994) · Zbl 0800.93025
[61] Lee, J. H.; Yu, Z., Worst-case formulations of model predictive control for systems with bounded parameters, Automatica, 33, 5, 763-781 (1997) · Zbl 0878.93025
[65] Magni, L.; Sepulchre, R., Stability margins of nonlinear receding-horizon control via inverse optimality, Systems & Control Letters, 32, 241-245 (1997) · Zbl 0902.93061
[69] Mayne, D. Q.; Michalska, H., Receding horizon control of non-linear systems, IEEE Transactions on Automatic Control, 35, 5, 814-824 (1990) · Zbl 0715.49036
[71] Meadows, E. S.; Badgwell, T. A., Feedback through steady-state target optimization for nonlinear model predictive control, Journal of Vibration and Control, 4, 61-74 (1998)
[72] Meadows, E. S.; Henson, M. A.; Eaton, J. W.; Rawlings, J. B., Receding horizon control and discontinuous state feedback stabilization, International Journal of Control, 62, 1217-1229 (1995) · Zbl 0841.93066
[73] Michalska, H., A new formulation of receding horizon control without a terminal constraint on the state, European Journal of Control, 3, 1, 2-14 (1997) · Zbl 0880.93043
[74] Michalska, H.; Mayne, D. Q., Robust receding horizon control of constrained nonlinear systems, IEEE Transactions on Automatic Control, 38, 1623-1632 (1993) · Zbl 0790.93038
[75] Michalska, H.; Mayne, D. Q., Moving horizon observers and observer-based control, IEEE Transactions on Automatic Control, 40, 6, 995-1006 (1995) · Zbl 0832.93007
[78] Morari, M.; Lee, J. H., Model predictive control: Past, present and future, Computers and Chemical Engineering, 23, 667-682 (1999)
[81] Mosca, E.; Zhang, J., Stable redesign of predictive control, Automatica, 28, 6, 1229-1233 (1992) · Zbl 0775.93056
[82] Muske, K. R.; Rawlings, J. B., Model predictive control with linear models, A.I.Ch.E. Journal, 39, 2, 262-287 (1993)
[84] Parisini, T.; Zoppoli, R., A receding horizon regulator for nonlinear systems and a neural approximation, Automatica, 31, 10, 1443-1451 (1995) · Zbl 0850.93343
[85] Peterka, V., Predictor-based self tuning control, Automatica, 20, 39-50 (1984) · Zbl 0539.93054
[87] Polak, E.; Yang, T. H., Moving horizon control of linear systems with input saturation and plant uncertainty — Part 1: Robustness, International Journal of Control, 58, 3, 613-638 (1993) · Zbl 0782.93050
[88] Polak, E.; Yang, T. H., Moving horizon control of linear systems with input saturation and plant uncertainty-Part 2: Disturbance rejection and tracking, International Journal of Control, 58, 3, 639-663 (1993) · Zbl 0782.93051
[89] Poubelle, M. A.; Bitmead, R. R.; Gevers, M., Fake algebraic Riccati techniques and stability, IEEE Transactions on Automatic Control, AC-31, 379-381 (1988) · Zbl 0635.93056
[93] Propoi, A. I., Use of linear programming methods for synthesizing sampled-data automatic systems, Automation and Remote Control, 24, 7, 837-844 (1963)
[96] Rao, C. V.; Wright, S. J.; Rawlings, J. B., Application of interior-point methods to model predictive control, Journal of Optimization Theory and Applications, 99, 3, 723-757 (1998) · Zbl 0973.90092
[98] Rawlings, J. B.; Muske, K. R., Stability of constrained receding horizon control, IEEE Transactions on Automatic Control, AC-38, 10, 1512-1516 (1993) · Zbl 0790.93019
[100] Richalet, J.; Rault, A.; Testud, J. L.; Papon, J., Model predictive heuristic control: Applications to industrial processes, Automatica, 14, 413-428 (1978)
[102] Robertson, D. G.; Lee, J. H.; Rawlings, J. B., A moving horizon-based approach for least squares state estimation, A.I.Ch.E. Journal, 42, 8, 2209-2224 (1996)
[104] Rossiter, J. A.; Kouvaritakis, B.; Rice, M. J., A numerically robust state-space approach to stable-predictive control strategies, Automatica, 34, 1, 65-74 (1998) · Zbl 0913.93022
[105] Scokaert, P. O.M.; Mayne, D. Q., Min-max feedback model predictive control for constrained linear systems, IEEE Transactions on Automatic Control, 43, 8, 1136-1142 (1998) · Zbl 0957.93034
[106] Scokaert, P. O.M.; Mayne, D. Q.; Rawlings, J. B., Suboptimal model predictive control (feasibility implies stability), IEEE Transactions on Automatic Control, 44, 3, 648-654 (1999) · Zbl 1056.93619
[107] Scokaert, P. O.M.; Rawlings, J. B., Constrained linear quadratic regulation, IEEE Transactions on Automatic Control, 43, 8, 1163-1169 (1998) · Zbl 0957.93033
[108] Scokaert, P. O.M.; Rawlings, J. B.; Meadows, E. S., Discrete-time stability with perturbations: Applications to model predictive control, Automatica, 33, 3, 463-470 (1997) · Zbl 0876.93064
[109] Scokaert, P. O.; Rawlings, J. B., Feasibility issues in linear model predictive control, A.I.Ch.E. Journal, 45, 8, 1649-1659 (1999)
[114] Sznaier, M.; Damborg, M. J., Heuristically enhanced feedback control of constrained discrete-time linear systems, Automatica, 26, 521-532 (1990) · Zbl 0713.93023
[115] Tadmor, G., Receding horizon revisited: An easy way to stabilize an LTV system, Systems & Control Letters, 8, 285-294 (1992) · Zbl 0751.93059
[116] Thomas, Y. A., Linear quadratic optimal estimation and control with receding horizon, Electronics Letters, 11, 19-21 (1975)
[118] Vidyasagar, M., On the stabilization of nonlinear systems using state detection, IEEE Transactions on Automatic Control, 25, 504-509 (1980) · Zbl 0429.93046
[119] Vuthandam, P.; Genceli, H.; Nikolaou, M., Performance bounds for robust quadratic dynamic matrix control with end condition, A.I.Ch.E. Journal, 41, 9, 2083-2097 (1995)
[121] Yang, T. H.; Polak, E., Moving horizon control of nonlinear systems with input saturation, disturbances and plant uncertainty, International Journal of Control, 58, 875-903 (1993) · Zbl 0786.93046
[125] Zheng, A.; Morari, M., Stability of model predictive control with mixed constraints, IEEE Transactions on Automatic Control, 40, 10, 1818-1823 (1995) · Zbl 0846.93075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.