×

zbMATH — the first resource for mathematics

A geometric proof of Rosenbrock’s theorem on pole assignment. (English) Zbl 0949.93028
Summary: A new proof of the famous Rosenbrock theorem on pole placement by static state feedback is given. This proof only uses well-known basic results of the geometric approach, that are the Brunovský canonical form of controllable systems and the splitting of the state space into cyclic subspaces relatively to the invariant factors of a linear map.
MSC:
93B55 Pole and zero placement problems
93B27 Geometric methods
93B10 Canonical structure
PDF BibTeX XML Cite
Full Text: Link EuDML
References:
[1] P. Brunovský: A classification of linear controllable systems. Kybernetika 6 (1970), 3, 173-188. · Zbl 0199.48202 · eudml:28376
[2] T. Brylawski: The lattice of integer partitions. Discrete Math. 6 (1973), 201-219. · Zbl 0283.06003 · doi:10.1016/0012-365X(73)90094-0
[3] B. W. Dickinson: On the fundamental theorem of linear state variable feedback. IEEE Trans. Automat. Control AC-19 (1974), 577-579. · Zbl 0288.93024 · doi:10.1109/TAC.1974.1100639
[4] D. S. Flamm: A new proof of Rosenbrock’s theorem on pole assignment. IEEE Trans. Automat. Control AC-25 (1980), 6, 1126-1133. · Zbl 0471.93018 · doi:10.1109/TAC.1980.1102509
[5] F. R. Gantmacher: The Theory of Matrices. Vol. I. Chelsea Publishing Co., New York 1977. · Zbl 0927.15002
[6] T. Kailath: Linear Systems. Prentice-Hall, Inc. Englewood Cliffs, N. J. 1980. · Zbl 0454.93001
[7] V. Kučera: Assigning the invariant factors by feedback. Kybernetika 17 (1981), 118-127. · Zbl 0478.93014
[8] J. J. Loiseau: Sur la Modification de la Structure à l’lnfini par un Retour d’Etat Statique. SIAM J. Control Optim. 26 (1988), 2, 251-273. · Zbl 0643.93016 · doi:10.1137/0326015
[9] J. J. Loiseau K. Özçaldiran M. Malabre, N. Karcanias: Feedback canonical forms of singular systems. Kybernetika 27 (1991), 4, 289-305. · Zbl 0767.93007 · www.kybernetika.cz · eudml:27723
[10] K. Özçaldiran: Fundamental theorem of linear state feedback for singular systems. Proceedings of the 29th CDC, Honolulu 1990, pp. 67-72.
[11] H. H. Rosenbrock: State Space and Multivariable Theory. Wiley, New York 1970. · Zbl 0246.93010
[12] W. M. Wonham: Linear Multivariable Control: A Geometric Approach. Springer-Verlag, New York 1985. · Zbl 0609.93001
[13] I. Zaballa: Matrices with prescribed rows and invariant factors. Linear Algebra Appl. 87 (1987), 113-146. · Zbl 0632.15003 · doi:10.1016/0024-3795(87)90162-5
[14] P. Zagalak, V. Kučera: Eigenstructure assignment in linear descriptor systems. Proceedings of the European Control Conference ECC’91, Grenoble 1991, pp. 409-414.
[15] P. Zagalak, J. J. Loiseau: Invariant factors assignment in linear systems. Proceedings of the Symposium on Implicit and Nonlinear Systems, Fort Worth 1992, pp. 197-204.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.