zbMATH — the first resource for mathematics

Galois co-descent for étale wild kernels and capitulation. (English) Zbl 0951.11029
For a number field \(K\) and a prime \(p\), let us denote by \(S\) a finite set of primes containing the primes above \(p\) and the archimedian primes. For \(i\geq 2\), the higher étale wild kernels \[ WK_{2i-2}^{\text{ét}} (F):= \operatorname {Ker} (H_{\text{ét}}^2 ({\mathcal O}_F^S, \mathbb{Z}_p(i))\to \bigoplus_{v\in S} H^2(F_v, \mathbb{Z}_p(i))) \] are natural generalizations of the \(p\)-part of the classical wild kernel (inside \(K_2\)). They play a similar role in étale cohomology, étale \(K\)-theory and Iwasawa theory as the \(p\)-primary part \(A_F'\) of the \((p)\)-class group of \(F\).
In this paper, given a cyclic extension \(L/F\) of degree \(p\) and \(G= \operatorname {Gal} (L/F)\), the authors study Galois co-descent for \(WK_{2i-2}^{\text{ét}} (L)\). The analogous problem for the étale \(K\)-groups \(K_{2i-2}^{\text{ét}} ({\mathcal O}_L^S)\) had been settled previously by J. Assim [Manuscr. Math. 86, 499-518 (1995; Zbl 0835.11043)] in terms of primitive ramification.
But the difficulty here lies in the cokernel \(K_{2i-2}^{\text{ét}} ({\mathcal O}_L^S)/ WK_{2i-2}^{\text{ét}} (L)\), and it is overcome by interpreting this quotient in terms of a Brauer group. The authors show that the transfer map \(WK_{2i-2}^{\text{ét}} (L)_G\to WK_{2i-2}^{\text{ét}} (F)\) is onto except in a very special situation, and they give a formula for the order of the cokernel in the style of genus theory. As an application, they determine all Galois \(p\)-extensions \(F/\mathbb{Q}\) such that \(WK_2^{\text{ét}} (F)= 0\).
A related problem concerns the étale capitulation kernels \(\operatorname {Cap}_{i-1} (F_\infty)\) \((i\geq 2)\), where \(F_\infty= \bigcup_n F_n\) is the cyclotomic \(\mathbb{Z}_p\)-extension of \(F\). These capitulation kernels are defined as \[ \varprojlim_n \operatorname {Ker} (K_{2i-2}^{\text{ét}} ({\mathcal O}_n^S)\to K_{2i-2}^{\text{ét}} ({\mathcal O}_\infty^S)) \] (with obvious notations) and are higher analogs of \[ \operatorname {Cap}_0 (F_\infty)= \varprojlim_n \operatorname {Ker} (A_n')\to A_\infty'). \] For a totally real field \(F\), it is shown that \(\operatorname {Cap}_{i-1} (F_\infty) \simeq WK_{2i-2}^{\text{ét}} (F_n)\) for large \(n\) and all odd \(i\geq 3\), if and only if Greenberg’s conjecture holds for \(F(\mu_p)^+\). Therefore the codescent results for the étale wild kernels imply similar results for the capitulation kernels.

11R23 Iwasawa theory
11R34 Galois cohomology
11R70 \(K\)-theory of global fields
Full Text: DOI Numdam EuDML
[1] J. ASSIM, Sur la p-nullité de certains noyaux de la K-théorie, Thèse, Université de Franche-Comté, 1994.
[2] J. ASSIM, Codescente en K-théorie étale et corps de nombres, Manuscripta Math., 86 (1995) 499-518. · Zbl 0835.11043
[3] G. BANASZAK, Generalization of the Moore exact sequence and the wild kernel for higher K-groups, Compositio Math., 86 (1993), 281-305. · Zbl 0778.11066
[4] A. BOREL, Cohomologie de sln et valeurs de fonctions zêta aux points entiers, Ann. Scuola Normale Sup. Pisa, Ser. 4, 4 (1977), 613-636. · Zbl 0382.57027
[5] B. BRAUCKMANN, Étale K-theory and Iwasawa-theory of number fields, Thesis McMaster University, 1993.
[6] J. BROWKIN, A. SCHINZEL, On Sylow 2-subgroups of K2OF for quadratic number fields F, J. Reine Angew. Math., 331 (1982), 104-113. · Zbl 0493.12013
[7] J. COATES, P-adic L-functions and Iwasawa’s theory in: algebraic number fields (ed. by A. Fröhlich), Academic Press, London, 1977, 269-353. · Zbl 0393.12027
[8] W.-G. DWYER, E.M. FRIEDLANDER, Algebraic and étale K-theory, Trans. AMS 292, No. 1 (1985), 247-280. · Zbl 0581.14012
[9] L. FEDERER, B.H. GROSS (with an appendix by W. Sinnott), Regulators and Iwasawa modules, Invent. Math., 62 (1981), 443-457. · Zbl 0468.12005
[10] G. GRAS, J.-F. JAULENT, Sur LES corps de nombres réguliers, Math. Z., 202 (1989), 343-365. · Zbl 0704.11040
[11] R. GREENBERG, On the Iwasawa invariants of totally real fields, Amer. J. Math., 98, (1976), 263-284. · Zbl 0334.12013
[12] J. HURRELBRINK, M. KOLSTER, Tame kernels under relative quadratic extensions and Hilbert symbols, J. Reine Angew. Math., 499 (1998) 145-188. · Zbl 1044.11100
[13] K. IWASAWA, On ℤl-extensions of algebraic number fields, Ann. of Math., 98 (1973), 246-326. · Zbl 0285.12008
[14] J.-F. JAULENT, Classes logarithmiques des corps de nombres, J. Théor. Nombres Bordeaux, 6 (1994), 301-325. · Zbl 0827.11064
[15] B. KAHN, On the lichtenbaum-Quillen conjecture in: algebraic K-theory and algebraic topology (ed. by J.F. Jardine), Nato Proc. Lake Louise 407, Kluwer 1993, 147-166. · Zbl 0885.19004
[16] B. KAHN, Descente galoisienne et K2 des corps de nombres, K-theory, 7 (1993), 55-100. · Zbl 0780.12007
[17] B. KAHN, Deux théorèmes de comparaison en cohomologie étale ; applications, Duke Math. J., 69 (1993) 137-165. · Zbl 0789.14014
[18] B. KAHN, The Quillen-lichtenbaum conjecture at the prime 2, preprint, 1997. · Zbl 0885.19004
[19] M. KOLSTER, An idelic approach to the wild kernel, Invent. Math., 103 (1991), 9-24. · Zbl 0724.11056
[20] M. KOLSTER, Remarks on étale K-theory and Leopoldt’s conjecture in: Séminaire de théorie des nombres, Paris, 1991-1992, Progress in Mathematics 116, Birkhäuser 1993, 37-62. · Zbl 1043.19500
[21] L. V. KUZ’MIN, The Tate module for algebraic number fields, Math., USSR Izv., 6, No. 2 (1972), 263-321. · Zbl 0257.12003
[22] A. S. MERKURJEV and A. A. SUSLIN, The group K3 for a field, Math., USSR Izv., 36, No. 3 (1991), 541-565. · Zbl 0725.19003
[23] J. MILNOR, Introduction to algebraic K-theory, Annals of Mathematics Studies 72, Princeton University Press, Princeton, 1971. · Zbl 0237.18005
[24] A. MOVAHHEDI, Sur LES p-extensions des corps p-rationnels, Thèse Paris 7, 1988.
[25] A. MOVAHHEDI et T. NGUYEN QUANG DO, Sur l’arithmétique des corps de nombres p-rationnels in Séminaire de théorie des nombres, Paris 1988-1989, Birkhäuser 1990, 155-200. · Zbl 0703.11059
[26] T. NGUYEN QUANG DO, Sur la ℤp-torsion de certains modules galoisiens, Ann. Inst. Fourier, 36-2 (1986), 27-46. · Zbl 0576.12010
[27] T. NGUYEN QUANG DO, Sur la cohomologie de certains modules galoisiens p-ramifiés, Théorie des nombres, J.-M. De Koninck et C. Levesque (éd.), C. R. Conf. Int., Quebec/Can. 1987, 740-754 (1989). · Zbl 0697.12009
[28] T. NGUYEN QUANG DO, K3 et formules de Riemann-Hurwitz p-adiques, K-Theory, 7 (1993), 429-441. · Zbl 0801.11049
[29] T. NGUYEN QUANG DO, Analogues supérieurs du noyau sauvage in Séminaire de théorie des nombres, Bordeaux, 4 (1992), 263-271. · Zbl 0783.11042
[30] J. ROGNES, Approximating K*(ℤ) through degree five, K-Theory, 7 (1993), 175-200. · Zbl 0791.19003
[31] J. ROGNES, K4 (ℤ) is the trivial group, preprint, 1998. · Zbl 0937.19005
[32] J. ROGNES, C. WEIBEL, Two-primary algebraic K-theory of rings of integers in number fields, J. Amer. Math. Soc., to appear. · Zbl 0934.19001
[33] P. SCHNEIDER, Über gewisse galoiskohomologiegruppen, Math. Z., 168 (1979), 181-205. · Zbl 0421.12024
[34] J.-P. SERRE, Corps locaux, Hermann, Paris, 1968.
[35] J.-P. SERRE, Cohomologie galoisienne, LNM 5, Springer, 1964. · Zbl 0128.26303
[36] C. SOULÉ, K-théorie des anneaux d’entiers de corps de nombres et cohomologie étale, Inv. Math., 55 (1979), 251-295. · Zbl 0437.12008
[37] K. WINGBERG, On the product formula in Galois groups, J. Reine Angew. Math., 368 (1986), 172-183. · Zbl 0608.12011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.