×

La variété caractéristique d’un système différentiel analytique. (The characteristic variety or an analytic differential system). (French) Zbl 0951.35007

Ann. Inst. Fourier 50, No. 2, 491-518 (2000); erratum ibid. 52, No. 5, 1591-1592 (2002).
Summary: The characteristic variety of an analytic linear differential system has the two following classical properties:
1. Independance of the filtration.
2. Integrability (e.g. stability by Poisson bracket).
Here, it is proven that the first property is still true for nonlinear systems outside of the zero-section. The second property is still true generically (at the other points, the question remains open).

MSC:

35A20 Analyticity in context of PDEs
35Q58 Other completely integrable PDE (MSC2000)
PDFBibTeX XMLCite
Full Text: DOI Numdam Numdam EuDML

References:

[1] [BCG] , , , and , Exterior differential systems, MSRI Publ., vol. 18, Springer (1992). · Zbl 0726.58002
[2] [BG] and , Characteristic cohomology of differential systems, I; general theory, J. Amer. Math. Soc., 8 (1995), 507-596. · Zbl 0845.58004
[3] [9] and , Global existence and blow-up for a shallow water equation · Zbl 0499.13009
[4] [BM] , What can be computed in algebraic geometry? Comp. alg. geometry and commutative algebras, Symposia Math., 39, Cambridge University Press (1993), 1-43. · Zbl 0846.13017
[5] [BS] , A criterion for detecting m-regularity, Inv. Math., 87 (1987), 1-11. · Zbl 0625.13003
[6] [Fr] , Points de platitude d’un morphisme d’espaces analytiques, Inv. Math., 4-2 (1967), 118-138. · Zbl 0167.06803
[7] [Ga] , The integrability of the characteristic variety, Amer. J. Math., 103 (1981), 445-468. · Zbl 0492.16002
[8] [GM] , , A basic course on differential modules, in D-modules coherents et holonomes, P. Maisonobe et C. Sabbah ed., Travaux en cours n° 45, Hermann (1993), 103-168. · Zbl 0853.32011
[9] [Go] , Integrability criteria for systems of non-linear partial differential equations, J. Diff. geometry, 1 (1967), 269-307. · Zbl 0159.14101
[10] [Gr] , Techniques de constructions en géométrie analytique, Séminaire H. Cartan, 13 (1960/1961), exposés 7-17, Benjamin (1967).
[11] [GS] , An algebraic model for transitive differential geometry, Bull. Amer. Math. Soc., 70 (1964), 16-47. · Zbl 0121.38801
[12] [Ho] , Géométrie analytique locale, Séminaire Cartan 13 (1960/1961), exposés 18-21, Benjamin (1967). · Zbl 0121.15906
[13] [Ka] , On the maximally overdetermined systems of linear differential equation I, Publ. RIMS Kyoto Univ., 10 (1975), 563-579. · Zbl 0313.58019
[14] [Ma] , L’involutivité générique des systèmes différentiels analytiques, C. R. Acad. Sc. Paris, 326-1 (1998), 863-866. · Zbl 0924.58116
[15] [21] , The Tate module for algebraic number fields, Math., USSR Izv., 6, No. 2 (1972), 263-321. · Zbl 1295.35005
[16] [Ri1] , Differential algebra, Coll. Publications n° 33, Amer. Math. Soc., Dover (1966).
[17] [Ri2] , Systems of differential equations, I - Theory of ideals, Amer. J. of Math., 60 (1938), 535-548.
[18] [Ts] , On variational bicomplexes associated to differential equations, Osaka J. of Math., 19 (1982), 311-363. · Zbl 0524.58041
[19] [Tu] , The Euler-Lagrange resolution, in Lect. Notes in Mathematics, n° 836, Springer (1980), 22-48. · Zbl 0456.58012
[20] [Ve] , Classe d’homologie associée à un cycle, Séminaire de géométrie analytique, exposé n° 6, A. Douady et J. L. Verdier, ed., Astérisque 36-37, Soc. Math. Fr. (1976). · Zbl 0346.14005
[21] [Vi] , The C-spectral sequence, Lagrangian formalism and conservation laws, I, II, J. Math. An. Appl., 100 (1984), 1-129. · Zbl 0548.58014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.